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ABSTRACT 
 
 
Recent fire accidents and terrorist events have highlighted that further work can be done 

to improve the safety of buildings during fire evacuations. To date, several evacuation 

models and tools have been developed to predict the safety of a building by comparing 

the time necessary to evacuate it and the time at which the conditions of the given 

environment become unacceptable. However, despite the increasing availability of new 

models and tools, many ‘crude’ assumptions are still made to represent human behaviour 

in fire. Another limitation acknowledged by several authors regards the modelling of 

evacuees’ decision-making. In fact, many crucial decisions affecting the evacuation time – 

such as the decision to start investigating and evacuating, the route choice, etc. – are 

often inputs rather than outputs of evacuation models. 

 

This work is an attempt to fill the gaps in the existing evacuation models by investigating 

the use of Random Utility Theory to develop new evacuees’ decision-making models. 

Random Utility Theory has been developed over the last century to model discrete 

choices combining a utility based structure and the paradigm of rational decision-makers. 

This theory has been used in many different fields– economics, transportation, marketing, 

etc. – to investigate and predict several discrete choices. This work aims at investigating if 

this theory can be used to model human behaviour in fire, comparing the assumptions 

underpinning the theory and the existing knowledge on evacuees’ decision-making. Then, 

a general data-based methodology is introduced in this work to use Random Utility 

Theory to estimate new evacuees’ decision-making models. This methodology combines 

existing understanding on how evacuees make decisions and existing or new behavioural 

data. This work analyses all the different combinations of techniques and research 

methods (i.e. research strategies) that can be used to collect behavioural data aimed at 

calibrating evacuees’ decision-making. This analysis identifies the pros and cons of each 

type of behavioural data in terms of several criteria, such as internal, external and 

ecological validity, experimental control, ethical issues, etc. 
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The general methodology introduces in this work is finally used to investigate three 

evacuees’ decisions: (1) the decision to start investigating and evacuating; (2) exit choice; 

(3) local movement choices. 

 

The first decision is investigated using observations (Revealed Preferences) of evacuees 

participating in unannounced evacuation drills in a cinema theatre. This dataset includes 

five unannounced evacuation trials carried out in a cinema theatre in Sweden involving 

571 participants. 

 

The second decision is studied using an online questionnaire and hypothetical scenario 

experiments (Stated Preferences). This dataset includes Stated Preferences from 1,503 

respondents from all over the world for 12 hypothetical evacuation scenarios illustrating a 

metro station with two available exits. The survey administered the hypothetical 

evacuation scenarios using pre-recorded videos and was distributed using the Internet 

(i.e. non-immersive Virtual Reality). 

 

The third decision is investigated using observations (Revealed Preferences) of 

participants in an immersive Virtual Reality experiment. The dataset includes the 

trajectories of 96 participants, who were asked to evacuate from a road tunnel interacting 

with the physical virtual environment using a joypad. 

 

The methodology introduced in this work represents a useful tool to identify all the factors 

affecting evacuees’ decision-making and the impact of each factor on the choices. The 

application of this methodology for the three selected choices has made it possible to 

identify the pros and cons of the adopted research strategies. Moreover, this work 

highlights the need for more advanced research strategies to develop future decision-

making models. 

 

 
Keywords: evacuation modelling; decision-making modelling; random utility theory; 
human behaviour in fire; virtual reality  
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SOMMARIO 
 
 
I recenti incendi ed attacchi terroristici hanno evidenziato come sia necessario effettuare 

nuovi studi per migliorare la sicurezza di edifici durante la loro evacuazione. Ad oggi, 

diversi strumenti come modelli di esodo sono stati sviluppati per predire la sicurezza di un 

edificio durante le fasi di evacuazione dovuta ad incendi, Tale analisi è fatto comparando 

il tempo necessario per evacuare l’edificio ed il tempo in cui le condizioni dell'ambiente 

diventano letali per gli occupanti. Tuttavia, nonostante l’incremento di nuovi modelli di 

esodo, la rappresentazione del comportamento umano in presenza di incendio è ancora 

basato su assunzioni semplicistiche. Diversi autori hanno anche evidenziato che un 

ulteriore limitazione dei modelli esistenti è la rappresentazione del processo decisionale 

delle persone mentre evacuano da un edificio. Infatti, molte decisioni prese dalle persone 

per evacuare da un edificio – si pensi alla decisione di iniziare ad investigare cosa sta 

accadendo e di evacuare, la scelta della via di fuga, etc. – sono spesso un input più che 

un output del modelli di esodo. 

 

Il seguente lavoro di tesi è un tentativo di colmare questa lacuna dei modelli di esodo 

attraverso l’uso della Teoria dell’Utilità Aleatoria sviluppando nuovi modelli del processo 

decisionale. La Teoria dell’Utilità Aleatoria è stata sviluppata nel corso dello scorso secolo 

al fine di modellare le scelte discrete combinando una struttura matematica basata 

sull’utilità ed il paradigma di decisori razionali. Questa teoria è stata applicata in differenti 

campi di ricerca – economia, trasporti, marketing, etc. – al fine di predire diverse scelte 

discrete. Questo lavoro è finalizzato ad investigare se questa teoria può essere utilizzata 

per rappresentare il comportamento umano in presenza di incendi. Questa indagine è 

fatta comparando le assunzioni alla base della teoria e le conoscenze attuali sul processo 

decisionale delle persone evacuate. Questo lavoro introduce anche una metodologi 

generale al fine di utilizzare la Teoria dell’Utilità Aleatoria per la stima di nuovi modelli del 

processo decisionale utilizzando dati comportamentali. Questa metodologia combina le 

conoscenze esistenti su come le persone prendono le loro decisioni per evacuare un 

edificio e dati comportamentali di casi studio nuovi o esistenti. Questo lavoro analizza 

tutte le possibili combinazioni di tecniche e metodi di ricerca (ovvero strategie di ricerca) 
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che possono essere utilizzate per raccogliere dati comportamentali finalizzati a calibrare i 

nuovi modelli del processo decisionale. Questa analisi consente di identificare i pro e 

contro dei diversi tipi di dati utilizzando diversi criteri, come la validità interna, esterna ed 

ecologica, il controllo sperimentale, le questioni etiche, etc. 

 

La metodologia generale introdotta in questo lavoro è in fine utilizzata per studiare tre 

decisioni: (1) la decisione di iniziare ad investigare ed evacuare; (2) la scelta dell’uscita e 

(3) le scelte di navigazione locale. 

 

La prima decisione è studiata utilizzando osservazioni (Preferenze Rivelate) di 

partecipanti ad una serie di prove di evacuazione antincendio da un cinema/teatro. Questi 

dati includono cinque prove di evacuazione eseguite in un cinema/teatro svedese 

coinvolgendo 571 partecipanti. 

 

La seconda decisione è studiata usando un questionario online che include scenari 

ipotetici (Preferenze Dichiarate). Questi dati includono Preferenze Dichiarate di 1,503 

partecipanti al questionario provenienti da tutto il mondo. Gli scenari ipotetici utilizzati in 

questa indagine rappresentano una stazione di metro con due uscite. Questi scenari sono 

stati mostrati attraverso video preregistrati che mostrano un ambiente virtuale. 

 

La terza decisione è investigate utilizzando osservazioni (Preferenze Rivelate) di 

partecipanti ad un esperimento in Realtà Virtuale. I dati includono le traiettorie di 96 

partecipanti, i quali avevano il compito di evacuare da un tunnel stradale interagendo con 

l’ambiente virtuale utilizzando un joypad. 

 

La metodologia introdotta in questo lavoro di tesi rappresenta uno strumento utile per 

identificare sia tutti i fattori che influenzano le decisioni prese dalle persone che evacuano 

un edificio sia per quantificare l’impatto di ogni singolo fattore sulla scelta. L’applicazione 

di questa metodologia per le tre scelte selezionate consente di identificare i pro e contro 

delle strategia di ricerca adoperate. Inoltre, questo lavoro evidenzia il bisogno di strategie 

di ricerca più  avanzate al fine di sviluppare e calibrare i modelli del processo decisionale 

del futuro. 
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ABBREVIATIONS 
 
 

ASET: Available Safe Egress Time 
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1. INTRODUCTION 
 
 

Recent fire accidents (e.g. Mont Blanc tunnel 1999, Frèjus tunnel 2005) and 

terrorist attacks (e.g. New York 2001, Madrid 2004, London 2005 and Paris 2015) have 

shown that existing transportation systems and buildings may fail to provide adequate 

safety conditions during evacuations. Many tragic events have highlighted that evacuees 

may not behave according to the designers’ and planners’ expectations during fire 

emergencies (Proulx 2002). 

 

Despite all the technological progress in the last decades to reduce the number of deaths 

or injuries, several events have shown that it is not always possible to fully predict and 

prevent human behaviour during fire emergencies. For instance, a study on the World 

Trade Centre evacuation carried out after the terrorist attacks of 2001 highlighted that 

many evacuees interviewed after the disaster stated that they took more than 17 minutes 

to start evacuating (Galea et al. 2007). Another example of behaviour which led to 

dramatic consequences was observed is in the Mont Blanc tunnel in 1999. In this 

accident, twenty-seven of the thirty-nine victims took the decision to remain in their own 

vehicles whereas two sought refuge in other vehicles, perishing from suffocation (Carvel 

& Beard 2005). Similar behaviour was observed in 2010 during an evacuation due to a 

false alarm, which occurred in a German road tunnel full of commuters because of a 

traffic jam. Only a few commuters followed the instruction to evacuate given to them 

(Kinateder 2012). Therefore, it is evident that an increase in the safety level and resilience 

of new and existing transportation systems and buildings in case of emergency requires 

deep insight into how evacuees behave and the factors affecting their behaviour during 

such emergencies. 

 

Human behaviour during fire emergencies has been investigated for over a century. One 

of the earliest documented investigations on human behaviour focusing on velocity of 

pedestrian movement was carried out in US in 1909 (National Bureau of Standards 

1935). Different institutions (e.g. National Fire Protection Association, London Transit 

Board) conducted similar investigations over the first half of the last century (Bryan 
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1999).The research in this field was continued by Bryan (1957) in the late 1950s and by 

Wood (1972) in the early 1970s and then eventually elaborated in the 1980s by Canter et 

al. (1980) with a book entitled “Fire and Human Behaviour” summarising the state-of-the-

art coming from the first International seminar on human behaviour in fire (Kuligowski & 

Mileti 2009). Nowadays, the interest in this field is still growing in the scientific community, 

which has started an ad hoc series of symposiums on “Human Behaviour in Fire” (Proulx 

2002). This raises a few questions: Why is it necessary to investigate human behaviour 

during emergencies? How can these studies on human behaviour help improve the safety 

and resilience of new and existing transportation systems and buildings? 

 

Studies on human behaviour can improve the safety and resilience of new and existing 

transportation systems and buildings in different and interrelated ways. These studies can 

support (a) the assessment of the risk, (b) the training and preparation for future fire 

events and (c) fire safety design (Canter 1980a). Understanding how people behave in 

the case of fire evacuation is essential to bring the design of buildings and infrastructures 

into line with evacuee needs during an incident (Kobes et al. 2010). Therefore, these 

studies are fundamental to develop new codes and regulations aimed at addressing this 

design issue.  

 

Nowadays, the building codes as well as infrastructure codes can be classified into 

prescriptive-based and performance-based. The former type of code consists of providing 

requirements which prescribe the solutions without explicitly stating the intent of the 

requirement, whereas the latter type introduces desired objectives giving the designer the 

freedom to choose among the design solutions meeting the objectives (Hadjisophocleous 

et al. 1998). In detail, the performance-based approach requires a comparison between 

the ASET (Available Safe Egress Time) and the RSET (Required Safe Egress Time). 

ASET is a time-threshold indicating the tenability limits after which the conditions of the 

given environment become unacceptable while RSET is the time needed by evacuees to 

escape safely (Proulx 2002; Nelson & Mowrer 2002). Different tenability criteria can be 

used to calculate ASET (NFPA 2002). One of the most used criteria is the intoxication 

rate which can be assessed using Fractional Effective Doses (FED), defined by Purser 

(2002). The current state of-the-art also presents many methods and models aimed at 
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simulating the evacuation process, which can be used to asses RSET (Nelson & Mowrer 

2002; Gwynne et al. 1999; Kuligowski et al. 2010).  

 

The impact of studies on human behaviour on the final design of buildings and 

transportation systems depends on the type of code adopted. Appleton (1980) represents 

the process through which data on human behaviour can eventually affect the prescriptive 

regulations as indicated in Figure 1. The diagram indicates that knowledge on how people 

cope with an emergency can be abstracted as a set of simple assumptions, which are 

then formulated into the regulations.  

 

 

Fig 1.1 – Process of regulation writing (Appleton 1980) 

 

Appleton (1980) points out that this approach seems to work reasonably well in traditional 

buildings (i.e. buildings having a regular layout) but it is questionable in the presence of 

non-conventional buildings which are likely to be larger and more-complex. Other 

criticisms on the prescriptive code have been raised by many other authors more 

recently. For instance, Hadjisophocleous et al.(1998) and Tavares (2009) provide an 

insight into the advantages associated with the shift from prescriptive-based code to 

performance-based code in different countries. Kobes et al. (2010) point out that previous 

fire accidents highlighted that the existing prescriptive code had not adequately supported 

the evacuation of people from buildings and transportation systems, whereas Tavares 

(2008) and Gwynne et al. (2015) argue that the performance-based code has become 
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more popular since it is easier to apply when assessing the safety of  new, unorthodox 

and complex buildings. 

 

In the performance-based context, studies on human behaviour have a greater and more 

direct impact on the final design of buildings and infrastructures. In fact, the performance 

approach relies mainly on knowledge on how people behave during evacuations to define 

evacuees’ untenable conditions (ASET) and to develop evacuation models, which can 

estimate RSET. These models represent useful tools to perform risk analysis and 

eventually improve the safety and resilience of new and existing transportation systems 

and buildings. The flexibility of these models allows the simulation of a large number of 

scenarios in a relatively short time. Several input parameters of these models can be 

easily modified in order to represent completely different evacuation scenarios (Ronchi 

2012). The next section provides a summary of the existing state-of-the-art of evacuation 

modelling. 

 

 

1.1 Evacuation Modelling 
 

In the last decades, several models have been introduced into the literature to 

describe and predict human behaviour during emergency evacuations. These models 

could have a different nature since their aim could be to provide either a quantitative 

estimation to assess the safety of building and transportation systems (i.e. engineering 

models) or a qualitative description of the process characterizing human behaviour during 

emergencies (i.e. conceptual models). The next section provides an insight into the 

quantitative models simulating evacuation. 

 

 

1.1.1 Engineering Evacuation Models 
 

One the most important pieces of information that is necessary for engineers to 

evaluate the safety of buildings and transportation systems is the total time taken by 

evacuees to reach a safe place, i.e. RSET (Proulx 2002). One of the simplest and most 
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used engineering approaches used for this purpose is the time-line model, which defines 

RSET as the sum of several sequential sub-times (Purser & Bensilum 2001; Proulx 2002; 

Nelson & Mowrer 2002). This model is undoubtedly a simplification of the real evacuation 

process, but it gives a quantitative analysis in a relatively short time and it has been 

included in various legislation,  e.g. ISO 16730-5 (2013), BSI PD 7974-6 (2004), etc. 

 

Following the time-line paradigm, RSET can be divided using different approaches. In this 

thesis, the sub-times taken into account are the ones proposed by Proulx (2002): 

 

𝑅𝑆𝐸𝑇 = ∆𝑇𝑑𝑒𝑡 + ∆𝑇𝑎𝑙 + ∆𝑇𝑒𝑣𝑎𝑐 Eq. 1.1 
 

where ∆𝑇𝑑𝑒𝑡 is detection time, which is the time from the beginning of an emergency to 

the time at which the emergency is detected whereas ∆𝑇𝑎𝑙 is the time required to activate 

the alarm once the emergency has been detected. In some cases these two events could 

be almost simultaneous (i.e. fire detected by an electronic device), but in other cases 

there could be a delay, for instance, if the alarm system is activated manually by an 

evacuee at a pull-station (Proulx 2002). There are many other cases in which an alarm 

cannot be activated or does not work and evacuees will eventually perceive other cues 

different from an alarm (e.g. presence of smoke, other evacuees’ behaviour, etc.) that will 

make them aware of the emergency. In these latter cases, both ∆𝑇𝑑𝑒𝑡 and ∆𝑇𝑎𝑙 are 

equal to zero. Finally, ∆𝑇𝑒𝑣𝑎𝑐 is the total evacuation time which can be divided into two 

major components: the pre-evacuation time, ∆𝑇𝑝𝑟𝑒 and the movement time, ∆𝑇𝑚𝑜𝑣 

(Purser 2003). The former is the delay time to start evacuation movement and it starts 

when evacuees are exposed to the first cues, e.g. alarm, smoke, etc., and ends when 

they begin to evacuate moving towards a safe place. The latter is the time spent by the 

evacuees to reach a safe place once they start their purposeful movement towards it. 

Different classifications have been developed to categorize the times making up the pre-

evacuation time. The most common sub-division includes recognition, ∆𝑇𝑟𝑒𝑐, and 

response time, ∆𝑇𝑟𝑒𝑠 (Purser & Bensilum 2001; Nelson & Mowrer 2002): 

 

∆𝑇𝑒𝑣𝑎𝑐 = ∆𝑇𝑟𝑒𝑐 + ∆𝑇𝑟𝑒𝑠 + ∆𝑇𝑚𝑜𝑣 Eq. 1.2 
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The recognition time is the time required for an evacuee to take the decision to evacuate 

once he has perceived the first cue. The response time is the interval between the time at 

which the evacuation decision is taken and the time at which an evacuee starts moving 

towards a safe place. 

 

RSET is always compared to the time when untenable conditions occur during an 

evacuation (i.e. ASET). For instance, in case of fire emergencies the untenable conditions 

may depend on the intoxication rate due to smoke inhalation, i.e. FED (Purser 2002) or 

the collapse of the structure (NFPA 2002). Figure 1.2 illustrates the different components 

which have been introduced in Equations 1.1 and 1.2. 

 

 

Fig.1.2 – Time-line model representation 

 

To date, RSET can be calculated by using both engineering equations and more 

sophisticated computational tools implementing different types of evacuation models 

(Proulx 2002). Several review papers have been published comparing the features of the 

existing building evacuation models (Kuligowski et al. 2010; Gwynne et al. 1999), 

investigating the methodological approaches used in these models (Zheng et al. 2009) 

and analysing their applications in the context of high-rise building evacuations (Ronchi & 

Nilsson 2013a). However, one key issue about these reviews is the rapid advances in the 

evacuation model capabilities and development, which makes it difficult to provide up-to-

date information on the existing state-of-the-art (Ronchi 2012). To address this issue, an 

on-line platform (www.evacmod.net) aimed at providing updated information about 
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existing models has been developed (Evacuation Modelling Portal 2015; Ronchi & Kinsey 

2011). 

 

These reviews highlight that three different approaches can be used to simulate 

evacuations: namely micro-simulation, macro-simulation and meso-simulation. Micro-

simulation tracks the detailed movement and interaction of individual entities, i.e. agents. 

On the other hand, macro-simulation tools represent the aggregate behaviour of 

pedestrians based on equations derived from analogies with hydraulic flows, using 

Navier-Stokes-type systems (Hoogendoorn 2001). Finally, the meso-simulation approach 

represents a compromise between micro and macro-simulators. The choice of the 

approach could depend on the scale of the problem, the focus of the investigation, the 

available computational power, and many other factors (Kuligowski et al. 2010). 

 

Among the available approaches, in recent decades the microscopic models have 

become the most popular to simulate the evacuations from buildings and transportation 

systems (Gwynne et al. 2015). One of the main reasons is that advances in computer 

science have gradually reduced the problems associated with computational costs 

(Mollick 2006). However, many other reasons supporting the use of microscopic  

pedestrian models are discussed by Hoogendoorn (2001). 

 

Among the existing microscopic evacuation models, it is possible to distinguish two broad 

classes, namely deterministic models and stochastic models (Lovreglio, Ronchi, et al. 

2014). The deterministic approach is easier to use but it has the limitation of only 

representing average behaviours (Gwynne et al. 1999). Thus, a deterministic model or 

sub-model may not be able to represent the unexplained variance in human behaviour in 

an exhaustive way. The stochastic approach is a strategy to simulate behavioural 

uncertainty (see Section 2.1.2) because it allows the modelling of different behaviours 

starting from the same conditions  (Ronchi et al. 2013; Lovreglio, Ronchi, et al. 2014). 

 

Despite the proliferation of many new microscopic evacuation models, several authors 

have raised criticisms on the state-of-the-art of the existing evacuation models (Groner 

2004; Kuligowski 2013; Gwynne et al. 2015). The main obstacle for reliable predictions of 
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the total evacuation time is not the simulation of evacuee’s movement, but the current 

ability to predict evacuees’ decision-making about when, where and how they move to 

reach a safe place during an emergency (Groner 2004). In fact, the literature still argues 

that evacuation modellers have made many more oversimplifications in some modelling 

areas, e.g. modelling of the decision-making process, rather than in others, e.g. modelling 

of physical movement (Kuligowski 2013; Gwynne et al. 2015). Existing models have 

several gaps in terms of simulation of the decision-making process that determines 

evacuees’ actions (Groner 2004). Many existing evacuation models make crude 

assumptions that do not allow many of the expected evacuation behaviours to be 

represented (Gwynne et al. 2015). Many other models leave the users the possibility of 

choosing input settings defining critical aspects of the evacuation process (e.g. pre-

evacuation time, exits selected by agents, etc.) to compensate for model omissions 

(Gwynne et al. 2015). Therefore, several evacuees’ choices are defined by the users 

before the simulation rather than predicted by the model. This approach could lead to 

either too optimistic or too conservative estimation of the RSET. Therefore, buildings and 

transportation systems could have procedures and solutions which result in an unsafe 

design on the one hand or an unnecessary and costly one on the other (Kuligowski 2013). 

These modelling issues are further amplified by the lack of behavioural data for the input 

setting, such as the pre-evacuation time (Proulx 2002). Moreover, the absence of well-

defined instructions in codes and regulations, especially in countries where the 

performance-based code is relatively new, may aggravate the modelling tasks (Ronchi 

2012). 

 

Several researchers have highlighted that the main reason of the use of crude 

assumptions to characterize the evacuees’ decision-making process instead of using 

proper decision-making models is the absence of robust, comprehensive and validated 

conceptual model (Kuligowski 2013; Gwynne et al. 2015; Gwynne & Kuligowski 2015). 

Another problem concerning the limitations of existing models is the lack of calibrating 

procedures and data to improve their predictability. The following sections aim to 

summarise the current state-of-the-art of conceptual models of evacuee’s behaviour and 

model calibration. 
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1.1.2 Conceptual Evacuation Models 
 

A conceptual model is a model which provides a formal description of the 

physical and social aspects of the real world for purposes of representing the key parts of 

a system (under investigation) and the interaction between these parts (Mylopoulos 

1992). In the field of human behaviour in fire, Gwynne and Kuligowski (2015) have 

extended this definition stating: 

 

“A conceptual behavioural model is a composite of existing theories and data that has 

been drawn together to represent some portion of evacuee behaviour.” (Gwynne & 

Kuligowski 2015, p. 23) 

 

Many such models have been developed to understand the key features affecting human 

behaviour during emergencies. These models are supposed to be the theoretical and 

empirical basis for the development of new decision-making models, which could lead to 

engineering models producing more reliable predictions. Figure 1.3 illustrates the impact 

that a decision-making model has on the structure of microscopic evacuation models 

according to Gwynne et al. (2015) and how conceptual models may affect the prediction 

of engineering models. 

 

  

(a) Non-implemented decision-making model. 

User drives performance 

(b) Implemented decision-making model.  

User sets scenarios 

Fig. 1.3 – Model representation. Sc: Scenario, Act: evacuee actions, Out: outcome, U: user, DMM: decision-

making model (Gwynne et al. 2015) 
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In the approach described in Figure 1.3 (a) there is no decision-making model and hence 

the conceptual model defining the evacuees’ behaviour relies entirely on user inputs. 

Therefore, no behaviour is simulated since the behavioural responses are pre-set by the 

user: 

 

“Behavioural actions are an input rather than an action” (Gwynne et al. 2015, p. 7) 

 

In contrast, the approach depicted in Figure 1.3 (b) includes a decision-making model 

generating the evacuees’ actions depending both on external factors characterizing the 

simulated environment and on internal factors defining the simulated evacuees (i.e. 

agents). In fact, the implemented decision-making model internalizes the external factors 

that influence the decision-making process and it combines these pieces of information 

with existing internal information to select the most appropriate response. In this second 

case, the user is only supposed to choose the evacuation scenario and the real-world 

factors from the building conditions/situations that may influence human performance and 

behaviour (Gwynne et al. 2012; Nilsson & Fahy 2016). Therefore, the conceptual model 

defining the evacuees’ decision-making is not an input provided by the user, but it 

represents the basis on which the decision-making model is developed. 

 

Bryan (2002), Kuligowski (2011) and Gwynne et al. (2015) have identified several existing 

conceptual models related to the field of evacuation behaviour in fire. One of the first 

conceptual models is the one proposed by Withey (1962) which describes the cognitive 

process involved in identifying and evaluating an emergency defining seven psychological 

and physical processes used by evacuees, namely, recognition, validation, definition, 

evaluation, commitment and reassessment. In contrast, Breaux et al. (1976) identify only 

three processes: recognition/interpretation, behaviour (i.e. action/ no action) and the 

outcome of the action (i.e. evaluation long-term effects), even though there are several 

similarities with Withey’s model (Bryan 2002). A further conceptual model developed to 

represent the key sequences of action evacuees commonly undertake is the one 

proposed by Canter et al. (1980). This model highlights how the information is processed 

in order to define the response to a fire emergency by interpreting the available 

information, preparing to act and eventually acting choosing between four alternatives: 
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evacuate, fight, warn and wait. A further more recent model is the one proposed by 

Kuligowski (2011) aimed at explaining the evacuees’ response during the 9/11 

evacuation. 

 

Gwynne et al. (2015) and Kuligowski (2013) have raised several criticisms against the 

existing conceptual models. Some of these models (such as the model by Canter et al. 

(1980)) provide limited details regarding the applications of the decision-making process 

in specific circumstances, others (such as the model by Kuligowski (2011)) only refer to a 

specific situation. Furthermore, other existing models, such as the stress model by Proulx 

(1993), need to be coupled with other theories since they describe partial attributes that 

affect the decision-making process rather than focusing on the overall process (Gwynne 

et al. 2015). 

 

A more recent attempt to define a robust and comprehensive conceptual model is the 

Protective Action Decision Model (PADM) developed by Kuligowski (2013). This model is 

based on over 50 years of empirical studies of hazards and disasters and provides a 

framework describing the decision-making steps that affect the protective actions taken in 

response to an emergency. Kuligowski (2013) identifies the following steps: perception of 

the information, attention to the information, comprehension of the information, evaluation 

of the nature of the threat, risk estimation, identification of protective actions, selection of 

a protective action and execution of the selected protective action. The processing of the 

available information is carried out by answering the following questions: 

 

1) Is there a real threat that I need to pay attention to? 

2) Do I need to take protective action?  

3) What can be done to achieve protection?  

4) What is the best method of protection?  

5) Does protective action need to be taken now? 

 

In answering these questions, evacuees proceed through the perceptual-behavioural 

steps, in which the outcome of the process is the performance of a behavioural action in 

response to the emergency. In many cases, evacuees cannot answer these questions 
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because of a lack of available information. Therefore, they need to engage in information 

seeking tasks by answering several other questions as illustrated in Figure 1.4. 

 

 

Fig. 1.4 – The protective action decision model by Kuligowski (2013). Picture source: (Kuligowski 2015) 

 

Even though the PADM provides a framework from which a conceptual model can be 

developed, it does not address the specifics related to building fires, such as the factors 

that would influence the different stages of the decision-making process, the types of 

behaviour that could occur at various stages and the nuances unique to building fires 

(Gwynne & Kuligowski 2015). To overcome this limitation, Gwynne et al. (2015) have 

expanded this theoretical framework introducing fire-related behavioural statements. The 

authors identify a list of twenty-four behavioural statements to use to represent the 

consequential phases defining the decision-making process, namely cue processing, 

situation and risk assessment, response selection and action (Figure 1.5). Gwynne and 

Kuligowski (2015) have successively expanded these statements including three other 

behavioural statements.   

 

 

Fig. 1.5 – Grouping of behavioural statements according to Gwynne et al. (2015). Picture source: (Gwynne 

et al. 2015) 
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On one hand, these behavioural statements represent guidelines to make engineering 

models more representative of the current understanding about evacuees’ decision-

making. On the other hand, the use of behavioural statements in the future generation of 

evacuees’ decision-making is a necessary condition for the achievement of more 

predictive models, but it is not sufficient. In fact, combining these statements with other 

assumptions, which are necessary to develop engineering models, could generate results 

that still contain significant gaps in the simulated evacuee response (Gwynne et al. 2015).  

 

Gwynne et al. (2015) have also introduced the structure of a simplified behavioural model 

suitable for implementation within a microscopic egress model (i.e. agent-based). This 

model structure extends the original form by Gwynne (2013), which was aimed at 

reflecting the theoretical developments made by Kuligowski (2011) regarding the 9/11 

WTC evacuation. Figure 1.6 illustrates a simple example of this model. It is assumed that 

an evacuee perceives both physical (Cp) and social cues (Cs) from the external world 

(ExtW). These cues are internalized and processed in the first block (Cue Processing). 

These pieces of information are then used in the second block to assess the emergency 

and eventually generate a response. Gwynne et al. (2015) identify several sub 

components aimed at processing the information, assessing the situation and selecting 

the response action. However, the authors acknowledge that even though the proposed 

structure outlines the types of component that are necessary in an evacuation decision-

making model, this structure needs to be specified in much greater detail for future 

implementation. 

 

 

Fig. 1.6 – Structure of the behavioural model by Gwynne et al. (2015). Picture source: (Gwynne et al. 2015) 
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Despite the acknowledged need for a comprehensive conceptual decision-making model, 

both the behavioural statements described by Gwynne et al. (2015) and the decision-

making framework outlined by Kuligowski (2013) can be used as a starting point to 

develop new computational evacuation decision-making models. If fact, these findings 

provide a theoretical basis for both selecting a consistent mathematical framework to 

simulate evacuees’ decision-making and specifying decision-making models.  

 

Despite the differences between the conceptual models available in the literature, there 

are invariant features in the representation of the decision making process, which can be 

identified. In fact, the decision-making process affecting evacuees’ behaviour can be 

conceptually summarized with three sub-sequential stages: information perception and 

processing, situation assessment, action selection. This model assumes that the 

decision-making process starts with the perception and processing of the information from 

the evacuation social/physical environment. This first step makes a decision-maker 

internalize the factors that could affect his choice. The processed information is then used 

to assess the evacuation context of choice (i.e. definition of the possible responses, the 

pros and cons of choosing an action, etc.). Subsequently, once the situation has been 

assessed, the decision-maker can select a course of action. The result of this decision-

making process can be visualized through the action made by the evacuees who could 

affect the external world and the evacuees’ capacity to perceive/process external cues 

and to assess the evacuation scenario as indicated in Figure 1.7. 

 

 

 

Fig. 1.7 – Conceptual structure of the decision-making process coming from a review of the existing 

conceptual model. 
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1.1.3 Model Calibration 
 

Once an evacuation decision model has been theoretically identified (i.e. 

identification of the type of choice and the factors affecting the choices) using behavioural 

assumptions and mathematically specified (i.e. identification of the equations linking 

factors to the final choice), one of the main problems is the calibration of the model 

parameters in order to reproduce not only the qualitative features but also reliable 

quantitative outcomes (Helbing et al. 2003). Calibrating a model consists of choosing the 

set of parameters optimising one or more goodness-of-fit measures, which are a function 

of both these parameters and the observed data (Ortuzar & Willumsen 2011). In other 

words, model calibration represents the link between a model and behavioural data. 

 

Two approaches have been developed to perform the calibration of evacuation models: 

top-down and bottom-up (Boltes et al. 2014). The first approach consists of selecting the 

set of parameters in order to reproduce observed macroscopic performances. This 

approach is also known in the literature as the macroscopic approach and it is based on 

the use of fundamental diagrams and evacuation time estimations (Schadschneider et al. 

2001; Guo & Huang 2011). This approach has been mainly used whenever the 

microscopic behaviours are unknowns (Boltes et al. 2014). In contrast, the bottom-up 

approach, also known as the microscopic approach, consists of estimating the model 

parameters looking directly at the microscopic performances of the dynamic system.  

These estimations can be made using different techniques, such as least-squares 

estimation, maximum likelihood estimation and Bayesian estimation (Greene 2011). This 

approach allows the observed macroscopic performance to be used to validate the 

calibrated models. Therefore, the microscopic  approach allows both local and global 

dynamics to be verified (Boltes et al. 2014). 

 

Despite the possibility of using several calibrating approaches, the calibration of 

evacuation decision-making models required several other issues to be solved. The main 

issue identified by several authors is related to lack of data necessary to calibrate and 

validate evacuation decision models (Galea 1998; Gwynne et al. 1999; Lovreglio, Ronchi, 

et al. 2014). However, even when these data are available, they need to be processed to 
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develop datasets suitable for the calibration of evacuation decision-making models. 

Therefore, there is also the need to develop ad hoc datasets using existing or new 

behavioural data.  

 

 

1.2 Research Motivations and Objectives 
 

The previous section outlined a number of critical aspects of existing evacuation 

models. One of the main issues raised in the previous sections is that a lot of effort has 

been made to investigate and model evacuees’ movement but relatively few studies focus 

on evacuees’ decision-making processes. Therefore, there is a need for decision-making 

models to develop an evacuation model in line with the structure in Figure 1.2-b. The 

fulfilment of this need represents the first motivation for this thesis. Another issue 

identified in the previous section is the lack of calibrating procedures to calibrate the new 

and existing decision-making models using behavioural data. The need for calibrating 

procedures linking decision-making models and behavioural data represents the second 

motivation for this thesis. 

 

The main objective of this work is to fill these gaps by investigating the possibility of using 

Random Utility Theory to develop/calibrate new decision-making models. Random Utility 

Theory assumes that the decision-maker chooses the alternative yielding the maximum 

utility and that this utility is not completely known to the modeller, so it has to be 

considered partially stochastic (Ortuzar & Willumsen 2011; Cascetta 2009). To date, 

many different more complex models/formulations have been introduced into the literature 

to address the limitations of the first formulations of random utility models and 

applications of Random Utility Theory have been proven successful in many different 

areas, including transportation, energy, marketing etc. (Hensher et al. 2005; Train 2009; 

Cascetta 2009). Few applications of Random Utility Theory to model human behaviour in 

fire emergencies have been described in the literature before the beginning of this thesis 

(Duives & Mahmassani 2012; Lovreglio, Borri, et al. 2014). However, none of these works 

investigates whether or not the assumptions of Random Utility Theory are in line with the 

existing knowledge on evacuees’ decision-making process and the potential offered by 
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Random Utility Theory can be applied to develop new decision-making models. This 

represents the third motivation for this thesis. 

 

Beyond the broad objective identified in the beginning of this section, several other 

specific objectives need to be defined and discussed in detail. This research has three 

key sub-objectives: 

 

1) Investigate the advantages and disadvantages of using Random Utility Theory to 

develop new evacuation decision-making models simulating evacuees’ choices.  

 

Before applying Random Utility Theory, it is necessary to identify the general assumptions 

underpinning the theory and verify whether these assumptions are in line with the existing 

understanding of evacuees’ decision-making process. This can be achieved by 

investigating both the general behavioural assumptions coming from the existing literature 

on decision-making and human behaviour during emergencies and by identifying the 

features of the decisions that evacuees need to take during their evacuation. If/how new 

decision-making models based on Random Utility Theory could improve the existing 

models represents a key question for this thesis.  

 

2) The second objective of this work is to reduce the existing gaps between real 

evacuation and simulated evacuations. This goal can be fulfilled both by developing a 

modelling approach simulating the real decision-making process during evacuation and 

by calibrating the proposed model with existing or new datasets. The calibration issues 

are addressed in this work by proposing formulations aimed at estimating the parameters 

of the proposed model specification based on Random Utility Theory. These formulations 

allow the impact that a factor has on the choice to be quantified and then statistically 

testing whether a factor has affected evacuee’s decisions in a controlled environment. 

Therefore, it is possible to compare the influence of different factors on the decision-

making. 

 

3) The last and ultimate objective of this work is to identify the available data collection 

techniques and research methods, which can be used to collect behavioural data for 
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calibrating decision-making models based on Random Utility Theory. The Pros and Cons 

of the different research strategies (i.e. combinations of data collection techniques and 

research methods) as well as the impact of these strategies on the final model need to be 

discussed. The aim of this thesis is to show how different strategies can be used to 

pursue several research goals. To address these issues, different behavioural data sets 

have been used to develop evacuation decision-making models based on Random Utility 

Theory. The datasets introduced by this work are created using different sources of data, 

namely unannounced evacuation drills and Virtual Reality (VR) experiments carried out 

by the Division of Fire Safety Engineering of Lund University (Sweden) and a new online 

stated preference survey carried out on an international scale with the cooperation of the 

Transport Research Institute of Edinburgh Napier University (UK) and the Department of 

Transportation and Projects and Processes Technology of the University of Cantabria 

(Spain). 

 

 

1.3 Outline of the Thesis 
 

The present thesis consists of six chapters and one appendix. 

 

In Chapter 1 (Introduction), the research problem is described, highlighting the need for 

decision-making models to model human behaviour in fire and the existing modelling 

issues and limitations. This analysis is aimed at identifying the motivations and related 

research objectives of this thesis. The chapter ends by introducing this outline of the 

thesis. 

 

Chapter 2 (Method) starts by describing the assumptions underpinning Random Utility 

Theory and verifying whether these assumptions are in line with the existing literature on 

evacuees’ decision-making processes. Then, a modelling procedure and the model 

formulations used to develop new decision-making models are introduced and discussed. 

Chapter 2 continues by identifying and describing the data-collection strategies available 

to collect behavioural data aimed at calibrating new decision-making models based on 

Random Utility Theory. Then, the selected choices and strategies investigated in this 
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thesis are introduced. The chapter ends by describing the methodological limitations of 

this thesis. 

 

Chapter 3 (Case Study 1: Decision of Start Investigating and Evacuating) investigates the 

possibility of modelling the decision to start investigating and evacuating. A pre-

evacuation decision-making model is presented based on Random Utility Theory and the 

behavioural states introduced by Reneke (2013). The pre-evacuation model is calibrated 

using data from unannounced evacuation drills in a cinema theatre to identify the 

social/physical factors affecting evacuees’ pre-evacuation behaviour. 

 

Chapter 4 (Case Study 2: Exit Choice) introduces a decision-making model based on 

Random Utility Theory to investigate the impact of different social/physical factors 

affecting exit choice at the same time. This is carried out using an online Stated 

Preferences survey. 

 

Chapter 5 (Case Study 3: Local Movement Choices) introduces a procedure to calibrate 

the existing discrete choice models based on Random Utility Theory formulation (i.e. floor 

field pedestrian cellular automaton models) using pedestrian trajectories. This procedure 

is tested using trajectories collected during a VR experiment. 

 

Chapter 6 (Conclusions) provides the conclusions of this thesis highlighting the possible 

impact of this research in real world applications and possible directions for future studies. 
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2. METHODS 
 

 

The main objective of this thesis is to investigate if Random Utility Theory can be 

used to develop new evacuation decision-making models and the possibility of using 

modelling techniques based on Random Utility Theory to calibrate these new models. 

 

Section 2.1 investigates whether Random Utility Theory can be a valuable theoretical 

framework to develop evacuation decision-making models. This is achieved by describing 

the general assumptions of this theory and identifying the key aspects affecting evacuees’ 

decision-making. Section 2.2 defines the steps required to develop an evacuation 

decision-making model based on Random Utility Theory whereas Section 2.3 introduces 

the mathematical formulation of the random utility models and the equations that can be 

used to calibrate these models. The possible data-collection approaches, which can used 

to collect behavioural data to calibrate decision-making models, are discussed in Section 

2.4 and the selected strategies used in this research are described in Section 2.5. This 

chapter ends with the identification of the limitations affecting Random Utility Theory, the 

selected modelling formulation and behavioural data used in this thesis. 

 

 

2.1 Random Utility Theory and Evacuation Decision-Making  
 

This section aims at assessing if Random Utility Theory can be used to develop new 

evacuation decision-making models. To address this goal, it is necessary to focus on the 

main assumptions underpinning this theory. 

 

 

2.1.1 Random Utility Theory 
 

The first work based on this theory was conducted in the first half of the last century. 

Thurstone (1927) introduced the mathematical formulation for the binomial probit model 

with his pioneering work entitled ‘A Law of Comparative Judgment’. Despite this work, the 
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main development and spreading of Random Utility Theory started in the 1960s thanks to 

both the increasing availability of survey data on individual behaviour and the advent of 

digital computers (McFadden 2001). In these years, Marschak (1960) introduced 

Thurstone's work into economics investigating the theoretical implications for choice 

probabilities of maximization of utilities that contained random elements whereas 

McFadden (1968) developed the formulation for the multinomial logit model, winning the 

Nobel prize in Economics in 2000. 

 

Random Utility Theory is the most common theoretical framework/paradigm, which has 

been used over the last 50 years to develop discrete choice models. This theory has been 

discussed in detail in the field of transportation and it is based on the following general 

assumptions (Cascetta 2009; Ortuzar & Willumsen 2011): 

 

1. Decision-makers belonging to a given population 𝑃, act rationally selecting the 

option which maximizes their personal utility (i.e. Homo economicus). This utility is 

affected by physical, social and economic constraints. 

 

2. Every decision-maker has a set of available alternatives 𝑨 = {𝐴1, … , 𝐴𝑛}. 

 

3. It is possible to define a vector 𝑿 = {𝑿𝑰, 𝑿𝑬} including measured internal and 

external factors. The internal factors (𝑿𝑰) include decision-makers’ personal 

characteristics and demographics whereas the external factors (𝑿𝑬) include all the 

characteristics/attributes of the available alternatives (i.e. social/physical factors 

affecting the choice of these alternatives). Therefore, each q decision-maker having 

a particular set of personal attributes 𝒙𝑰 ∈ 𝑿𝑰 faces his predetermined choice set 

𝑨(𝑞) ∈ 𝑨 which is defined by a set of choice attributes 𝒙𝑬 ∈ 𝑿𝑬. 

 

4.  Each q decision-maker associates to each 𝐴𝑗 ∈ 𝑨(𝑞) a utility 𝑈𝑗𝑞. Since it is not 

possible to have complete information regarding all the elements considered by the q 

decision-maker, it is possible to assume that 𝑈𝑗𝑞 is the sum of two components:  
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𝑈𝑗𝑞 = 𝑉𝑗𝑞(𝜷|𝒙) + 𝜀𝑗𝑞 Eq. 2.1 

 

where 𝑉𝑗𝑞 is a measurable and systematic part which is a function of the measurable 

attributes 𝒙 = {𝒙𝑰, 𝒙𝑬}. 𝑉𝑗𝑞 includes 𝜷 parameters which can be assumed to be 

constant for the decision-makers belonging to a given population 𝑃 (fixed-coefficient 

models) or to vary among the population 𝑃 (random parameter models) as 

discussed in Section 2.3 (McFadden & Train 2000). 

 

𝜀𝑗𝑞 is a random part which includes several factors (Cascetta 2009): 

 

a) Variability among decision-makers and variations in tastes and preferences 

between different decision-makers and for a single decision-maker over time 

(i.e. a decision-maker facing the same situation at different times can take 

different choices). 
 

b) Decision-maker’s error in the evaluation of the attributes which affect his 

choice. 
 

c) Modeller’s error in measuring the attributes that are included in the 

systematic part. 
 

d) Attributes that affect the choice but may not be included in the systematic 

part since they could be difficult or impossible to quantify. 
 

e) Some attributes included in the model could be an imperfect representation 

of the actual attributes affecting the choice. 

 

It is possible to assume that 𝜀𝑗𝑞 are random variables with mean 0 and a certain 

probability distribution depending on the type of the model, as discussed in Section 

2.3.  

 

5. The q decision-maker selects the maximum-utility available alternative from his 

choice-set 𝑨(𝑞) if and only if: 
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𝑈𝑗𝑞 ≥ 𝑈𝑖𝑞 , ∀ 𝐴𝑖 ∈ 𝑨(𝑞) 

⇔ 

𝑉𝑗𝑞 − 𝑉𝑖𝑞 ≥ 𝜀𝑖𝑞 − 𝜀𝑗𝑞 , ∀ 𝐴𝑖 ∈ 𝑨(𝑞) 
Eq. 2.2 

 

Equation 2.2 shows that it is not possible to determine with certitude the decision 

made by the q decision-maker, since (𝜀𝑖𝑞 − 𝜀𝑗𝑞) is not known. However, assuming 

that the random parts 𝜀𝑗𝑞 have their own random distributions, it is possible to 

estimate the probability of the q decision-maker choosing the alternative 𝐴𝑗. Different 

random utility models can be estimated according to the assumptions made on the 

random distribution of the random parts, as discussed in Section 2.3. 

 

The next sub-sections aim at identifying and describing the key aspects related to 

evacuees’ decision-making, which are useful to investigate whether Random Utility 

Theory could be a valid theory to be used to address the need for new evacuation 

decision-making models. 

 

 

2.1.2 Decision-Making during Evacuation 
 

Evacuation behaviour has been investigated since the beginning of the last 

century by many researchers and institutions (Bryan 1999). These studies have 

highlighted the complexity of this behaviour and that many factors can affect the decision-

making process behind this behaviour (Bryan 2002; Proulx 2002; Kobes et al. 2010).  

 

Evacuees facing an emergency need to take several decisions to evacuate a building 

and/or transportation system (Lovreglio 2014). Regardless of the type of structure, the 

interpretation of the situation to become aware of the danger represents the first decision-

making task affecting evacuees’ behaviour (Kobes et al. 2010; Kuligowski 2013). This 

task occurs during the recognition time and it can be achieved by choosing to engage in a 

series of activities aimed at acquiring more sources of information whenever the 

information about what is going on is not readily available. Therefore, evacuees could 
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engage in the milling process (i.e. they start talking and milling around with others in an 

effort to get a better understanding of the situation at hand) selecting several actions 

(Proulx 2002; Proulx & Fahy 2008). In other words, evacuees need to choose between 

different possible actions that can help them to get a clear understanding of the 

emergency in order to assess the situation and make a decision on the best evacuation 

response. This process is important since the following decisions, namely the decision to 

start evacuating (defining the passage from recognition to response time) depends upon 

all the cues that the evacuees have perceived and internalized (Canter et al. 1980; Bryan 

2002). Many studies have shown that evacuees have trouble estimating the real danger 

of an emergency situation and this could delay the decision to evacuate (Kobes et al. 

2010). For instance, evacuees’ belief about the speed at which fire and smoke spread are 

often incorrect (Purser & Bensilum 2001; Proulx 2001).  

 

Once the decision to evacuate has been taken, the response phase starts and evacuees 

have to deal with several other decision-making tasks aimed at defining the strategy to 

reach a safe place. Before starting the movement toward a safe place, evacuees could 

decide to engage in different pre-evacuation activities. In fact, several papers and reports 

document that evacuees, before starting evacuating, could take several actions including: 

taking care of work-related duties, gathering personal items, looking for people with whom 

they have social bonds, changing clothes or shoes, etc. (McConnell et al. 2010; Sherman 

et al. 2011). At this stage, the wayfinding (i.e. route choice) is one of the fundamental 

tasks which determines the success of an evacuation (Nilsson 2009; Fridolf, Ronchi, et al. 

2013; Lovreglio, Borri, et al. 2014).  

 

Finally, once evacuees start their movement toward a safe place (movement time) they  

need to make short term decisions (i.e. local movement choices) to go through the 

selected path interacting with other evacuees, physical obstacles including fire and smoke 

(Kirchner & Schadschneider 2002; Antonini et al. 2006; Fridolf, Ronchi, et al. 2013). All 

the local movement choices include several navigation decisions such as the choice of a 

direction and speed selection (Antonini et al. 2006). Moreover, during the movement time, 

evacuees could still modify their evacuation strategy by selecting new routes to get out of 

the structure. 
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Figure 2.1 summarizes the decisions that need to be taken by evacuees dividing them 

into different steps defined by the time-line model described in Section 1.1.1. Most of the 

decisions listed in Figure 2.1 are discrete choices (i.e. choices between two or more 

discrete alternatives). For instance, the decision to start investigating and evacuating are 

both binary choices since an evacuee can either choose to start these activities or not. 

Therefore, Random Utility Theory, which is a framework to develop discrete choice 

models, can be formally used to model this kind of choices by assigning a utility to each 

alternative as discussed at the beginning of this section.  

 

 

Fig. 2.1 – Decisions to be taken during the recognition, response and movement time 

 

However, some of these choices such as the local movement choices are not discrete but 

continuous. For instance, an evacuee can choose his/her direction steering over 360 

degrees whereas the decision of his speed can vary between different continuous values 

bounded by the maximum speed. In these cases, the use of Random Utility Theory is not 

straightforward. This theory can still be applied by discretizing the continuous variables 

and transforming them into equivalent discrete variables. This approach is in line with the 

general paradigms already used in evacuation modelling adopted by several existing 

evacuation models to deal with the continuity of time and space (the use of time-steps or 
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space discretization) (Kuligowski et al. 2010). Moreover, several studies have proved that 

this approximation allows realistic pedestrian and evacuation models (Kirchner & 

Schadschneider 2002; Antonini et al. 2006). However, a modeller should be aware that 

such a limitation could be too crude to develop comprehensive evacuation models for 

specific situations such as crowded scenarios (Lovreglio, Ronchi, et al. 2016). Another 

approach overcoming this limitation can be the use of a continuous spatial choice model, 

i.e. an extension of the discrete choice models for decision involving continuous variables 

(Ben-Akiva & Watanatada 1981). 

 

Some of the aforementioned decisions (such as path choice) could be dynamic over time 

due to the lack of information to take a single choice (Lovreglio, Borri, et al. 2015). In 

these cases, the final choice is the result of partial ongoing choices. For instance, the final 

path of evacuees can be the result of the preliminary choices of hyperpaths (i.e. a set of 

paths having a partial common itinerary) which they make during their movement toward 

a safe place. Figure 2.2 shows an evacuee who has to choose between four different 

paths leading to four different exits. When he/she starts evacuating, he/she could choose 

between hyperpaths A and B as first choice at time t1. Then, he/she has to choose the 

final path only once the paths forming a hyperpath diverge due to a second choice at time  

t2 (t2> t1). Therefore, the evacuee postpones the decision of the final path until time t2 

since he/she will have more accurate information about the evolution of the scenario at 

that time.  

 

Random Utility Theory can represent this kind of decision-making structure. In fact, the 

decision taken by the simulated evacuees (i.e. agents) can be represented at different 

times by only considering the amount of information available at these different 

evacuation stages. The information used to take a choice can be modified depending on 

the position of the agent and how the simulated environment is sensed by it. 

 

Decision making during emergencies is different from everyday decision-making, in which 

humans are generally supposed to be able to make choices having enough time to collect 

information and to evaluate every possible outcome (Starcke & Brand 2012). The 

common idea on these decisions is that (a) they must be made quickly, (b) they might be 
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irrevocable and (c) available information on which to assess the situation and to base a 

decision could be limited or overwhelming (Proulx 1993). The literature argues that the 

time pressure (i.e. the limited time available to evacuees), emotional state (i.e. anxiety 

and fear) and the psychological stress (i.e. unpleasant emotional state due to 

environmental events or stimuli (Janis & Mann 1977)) can affect the way in which 

evacuees  process the sources of information and take decisions (Proulx 1993; Ozel 

2001; Starcke & Brand 2012; Kuligowski 2013). In contrast to everyday decision-making, 

the rate of information processing could dramatically increase because of both the 

increase in the amount of data as well as the decrease in the time available to process 

these data (Ozel 2001). These findings raise several questions: How do evacuees cope 

with decision-making tasks under stress? Do they panic or behave rationally? The 

following subsection aims at answering this question by considering the existing literature 

on the concept of panic during evacuations. 

 

 

Fig. 2.2 – Example of hyper-paths for a building. Picture source:  (Lovreglio, Borri, et al. 2015) 

 

 

2.1.3 Panic Behaviour vs. Rational Behaviour 
 

The dramatic consequences of catastrophic events are very often attributed to 

‘panic’ by the media. Many definitions for the concept of panic have been suggested in 
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the literature (Fahy et al. 2012) . ‘Panic’ is usually defined as some sort of irrational 

behaviour known as ‘non-adaptive behaviour’ which consists of a population fleeing 

without regard for others, inflicting physical injuries on themselves and others (Bryan 

2002). 

 

Over the last decades, the concept of panic has been discussed by several authors for a 

variety of situations and has been adopted in the fire context to explain tragedies and to 

justify changes in codes and standards (Sime 1980; Keating 1982). However, the 

common conception of panic was challenged by investigations of specific disasters 

carried out by several researchers in the 1970s (Canter et al. 1980; Sime 1980; Haber 

1980). In fact, these studies started suggesting that the concept of panic is a myth on 

which to blame the results of tragedies instead of considering the possibility that building 

designers and managers could be responsible for these tragic results (Keating 1982; 

Fahy et al. 2012). 

 

Sime (1980) has indicated that the panic behaviour is often attributed to a person by an 

‘observer’ whereas the person, who is supposed to be panicking, has a very different 

perception of his own status. Such a trend has also been observed by Brennan (1999) 

interviewing survivors of several fires which occurred in Australia. These interviews 

highlight that a survivor generally attributes panic behaviour to other evacuees, whereas 

he/she describes his/her behaviour in more rational terms. The same conclusion was 

reached by Fahy et al. (2012) analysing the interview data from different case studies, 

e.g. Gothenburg discotheque fire 1998, World Trade Center attack 2001, station night 

club fire 2003, etc.. After their analysis, the authors argued that many aspects of the 

evacuees’ behaviour can be rationalized when the event is seen from the subject’s 

perspective. Moreover, the authors argue that the judgment on the occurrence of panic 

during an evacuation is strongly affected by the outcome of the events by using this 

example: 

 

“For example, when a crisis response, such as re-entering a burning building, results in a 

fatality, it is labelled as ‘panic’, yet when the identical response results in lives saved, it is 

labelled as ‘heroic’.” (Fahy et al. 2012, p. 335) 
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However, there are also many cases in which survivors used the term ‘panic’ to describe 

their own behaviour, but the actual actions demonstrated that they did not really panic. A 

careful analysis has shown that this term is used by them to describe more a state of 

heightened fear and anxiety than any kind of non-adaptive behaviour leading to the death 

or injury of a person (Fahy et al. 2012).  

 

In conclusion, it is possible to argue that, according to the existing literature, human 

behaviour under stress is ‘relatively’ rational, controlled and adaptive (Quarantelli 1977; 

Canter et al. 1980; Bryan 2002; Kobes et al. 2010). These findings are in line with 

Simon’s assumption that human beings are ‘information processing entities’ having 

processing capacities which can be limited by the circumstances created by emergencies, 

known in the literature as ‘bounded rationality’ (Simon 1960; Ozel 2001). Therefore, even 

though emergencies can distort and change the mechanisms by which evacuees make 

decisions, it is still possible to assume that these choices are still rational. In fact, 

evacuees make their decisions in a way that is procedurally reasonable in light of the 

available information and means of computation (Simon 1986; Simon 1978; Starcke & 

Brand 2012). 

 

These findings support the possibility of using Random Utility Theory to develop 

evacuation decision-making models since one of the main assumptions of this theory is 

that decision-makers act rationally, selecting the alternative which maximizes their utility. 

However, even though Random Utility Theory assumes that evacuees maximize their 

utility, this does not mean that their act only individualistically. In fact, evacuees’ utility 

functions can include social factors, which could make adaptive/collective behaviours rise. 

Therefore, group behaviour such herding behaviour could arise using the utility structure 

provided by Random Utility Theory as has been demonstrated by several studies 

(Schadschneider 2002; Antonini et al. 2006; Lovreglio, Fonzone, et al. 2014; Lovreglio, 

Fonzone, et al. 2016). 
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However, the assumption of decision-makers who decide by maximizing their utility could 

conflict with the 10th behavioural statement identified by Gwynne et al. (2015) 

summarizing the findings of Simon (1956): 

 

“People tend to satisfy rather than optimize. People are more likely to choose an option 

that is perceived as ‘‘good enough’’ rather than the best option.” (Gwynne et al. 2015, p. 

14) 

 

According to Grether et al. (1986), this trend occurs for contexts of choice in which the 

information environment becomes very rich or the decision task becomes very complex 

(i.e. many possible alternatives) relative to the decision-makers’ available time or 

expertise. Under these circumstances, a decision-maker may prefer to satisfy rather than 

optimize because of high costs of acquiring and processing information defining the 

choice set. This behavior may have a strong impact on the definition of the choice set of 

evacuees. Therefore, evacuees could not process all the available alternatives defining 

the context of choice since they could stop looking for further alternative once they have 

found one which is good enough. For instance, an evacuee choosing an exit in a room 

having five exits (i.e. complete choice set) may not consider all the available options but 

he/she could assign a utility to only three exit and choose the option with the relative 

maximum utility (i.e. the best option of a subset of the complete choice set) rather than 

absolute maximum utility (i.e. the best option of the complete choice set). Therefore, the 

use of Random Utility Theory for evacuation decisions having many possible alternatives 

and a large amount of information to process is still possible. However, it is necessary to 

couple a random utility model with a sub model able to simulate the creation of the choice 

set depending on the complexity of the context of choice and evacuees’ skills. 

 

 

2.1.4 Behavioural Uncertainty 
 

Another concept that needs to be discussed is ‘behavioural uncertainty’. This 

concept was introduced into the literature by Ronchi et al. (2013) and refers to the 

observed uncertainty associated with the stochastic nature of human behaviour. It is 
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worth highlighting that this concept refers to how an external observer, such as a 

researcher or a modeller, can perceive the evacuation process and the behavioural 

aspects affecting this process. In fact, the complexity of this phenomenon does not allow 

an external observer to have a clear understanding of all the physical and social factors 

affecting human behaviour during evacuations. Therefore, this concept does not conflict 

with the evacuees’ rational paradigm described in Section 2.1.3, but it indicates that the 

existing knowledge of human behaviour does not allow researchers to have a clear 

understanding of all the if-then conditions affecting evacuees’ decisions as well as the 

behavioural difference between evacuees. 

 

The concept of behavioural uncertainty is the result of several investigations showing that 

human behaviour during evacuation can be seen as a stochastic process (Averill 2011). 

In fact, the evacuation of the same building or transportation system with the same people 

starting in the same places on consecutive days could lead to very different results 

(Averill 2011). This is due to both the complexity of the situation and the complexity of 

evacuees’ decision-making processes. Therefore, the divergence of the results could be 

explained by considering that a change in the state of a complex system, which could be 

imperceptible to an external observer, can result in large differences in a later state (i.e. 

butterfly effect) (Helbing & Lämmer 2008). Therefore, two evacuation scenarios 

apparently similar to external observers may lead to different results. 

 

Lovreglio et al. (2015) have defined two sources of behavioural uncertainties, namely 

Intrinsic Behavioural Uncertainty, and Perceptions and Preferences Behavioural 

Uncertainty. Intrinsic Behavioural Uncertainty captures the fact that (a) the choices taken 

by different decision-makers perceiving a situation in the same way may be different (i.e. 

evacuees having the same risk perception of evacuation scenarios can act differently 

depending on their risk aptitude); and (b) the same decision-makers could choose 

different actions when they face the same situation at different times. Perceptions and 

Preferences Behavioural Uncertainty is related to different decision-makers’ perceptions 

(i.e. different decision-makers can have different quantitative estimates of the same 

factor) and preferences (i.e. a certain factor may have different importance to different 

evacuees) concerning the variables that influence the choice. Therefore, the source of 
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behavioural uncertainty explains why evacuees/pedestrians do not always make the 

same decisions under the ‘apparently’ same circumstances (Hoogendoorn & Bovy 2004).  

 

Behavioural uncertainty can be simulated in decision-making models developed using 

Random Utility Theory since these models are stochastic (i.e. they predict the probability 

that an alternative is selected). As highlighted in Section 2.1.1, one of the goals of the 

random part of Equation 2.1 is to represent the variability between decision-makers. In 

fact, this parameter can simulate both variations in tastes and preferences among 

different decision-makers and for a single decision-maker over time (i.e. a decision-maker 

facing the same situation at different times can take different choices). Therefore, 

Random Utility Theory allows the simulation of both Intrinsic Behavioural Uncertainty and 

Perceptions and Preferences Behavioural Uncertainty. Moreover, Lovreglio et al. (2015) 

argue that the simulation of variations in tastes and preferences between different people 

(i.e. Perceptions and Preferences Behavioural Uncertainty) can also be improved using a 

random parameter approach such as random parameter logit models, also known as 

Mixed Logit Models (McFadden & Train 2000; Train 2009).  

 

 

2.1.5 Advantages of Random Utility Theory 
 

This section has described the main assumptions of Random Utility Theory to 

verify whether this theory can be adopted to develop evacuation decision-making models. 

The results of this section show that the mathematical framework provided by Random 

Utility Theory can be used to develop new decision-making models for several reasons: 

 

1. Random Utility Theory provides the mathematical framework for disaggregate 

behavioural models aimed at predicting the behaviour of single decision-makers. 

Therefore, it is suitable for a microscopic approach (i.e. agent-based approach) to 

simulate the evacuation process. 

 

2. The analysis of the decision-making process during evacuation (Section 2.1.2) 

highlights that many decisions taken during evacuation (with the exception of navigation) 
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are discrete. Random Utility Theory, providing one of the most used mathematical 

frameworks to develop discrete choice models, can be used to simulate these discrete 

evacuation choices. Moreover, the literature has proved that this framework can also be 

used for modelling continuous choice by transforming them into equivalent discrete 

choices. 

 

3. The analysis conducted in Section 2.1.3 shows that the actions taken by evacuees 

derive from a rational decision-making process. Therefore, Random Utility Theory is in 

line with this observation since it assumes that a decision-maker acts rationally, 

maximizing their utility. However, in complex situation characterized by the processing of 

a large amount of information and time pressure, a random utility model may need to be 

coupled with a sub-model, which extracts a subset of alternatives from the complete set 

of alternatives as discussed in Section 2.1.3. 

 

4. Random Utility Theory allows the simulation of the uncertainty related to evacuees’ 

behaviour. In fact, the two sources of behavioural uncertainty (i.e. Intrinsic Behavioural 

Uncertainty and Perceptions and Preferences Behavioural Uncertainty) can be simulated 

using random terms and random parameters. 

 

The methodological steps used to develop new decision-making models based on 

Random Utility Theory are described in the next section. 

 

 

2.2 Modelling Procedure 
 

The development of decision-making models based on Random Utility Theory 

consists of several steps. The procedure used in this thesis is illustrated in Figure 2.3 and 

it can be used to develop a decision-making model for any choice affecting evacuees’ 

behaviour described in Section 2.1.2.   
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Fig. 2.3 – The steps involved in the identification of a decision-making model for a selected choice. 

 

The procedure starts with the selection of the choices to be simulated by the decision-

making model. Once the choices have been selected, the modeller needs to identify the 

behavioural assumptions affecting the choices. This issue can be addressed by 

investigating the existing literature on decision-making during evacuations as well as by 

using existing behavioural statements such as those proposed by Gwynne et al. (2015) 

and Gwynne and Kuligowski (2015). This step is aimed at identifying the structure of the 

choice (e.g. number of alternatives: binary, multinomial choice, etc.) and eventually the 

external and internal factors that may affect the choice. External factors include all the 

factors deriving from the physical/social evacuation environment whereas the internal 

ones include the decision-makers’ demographics (e.g. age, gender, etc.) and personal 

characteristics (e.g. previous experiences, sensory and cognitive impairments, etc.). 

 

Once the behavioural assumptions have been selected, it is possible to specify the model 

for the selected choice. The specification of a model consists of the selection of the 

mathematical framework (i.e. which random utility model to use) and the definition of the 

utility functions (i.e. which factors to include in the model) of the possible alternatives. In 

this work, the mathematical framework selected is the one provided by the Mixed Logit 
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Models (McFadden & Train 2000; Hensher et al. 2005; Ortuzar & Willumsen 2011). The 

equations defining these models as well as their advantages are discussed in Section 2.3. 

Once the mathematical framework has been selected, utility function specifications need 

to be addressed. On one hand, the utility specification can be limited by data since a 

factor can be included in the model only if it is included in the dataset. It may be that a 

single dataset does not include all the factors that can theoretically affect the choices. 

This issue is evident whenever a dataset is created using observations from real 

accidents or experiments carried out for other purposes (i.e. purposes different from the 

developing of a decision-making model). On the other hand, the model specification can 

affect the data collection procedure. New experiments can be carried out with the main 

purpose of calibrating a specified decision-making model. In these cases, the 

experiments are designed to include all the factors considered relevant to develop a 

specific decision-making model. For instance, experiments can be designed and carried 

out to investigate the mutual impact of social influence and emergency signage on exit 

choice.  

 

Model estimation is the following step. The estimation is performed by optimizing an 

objective function. In this work, the maximization of likelihood functions has been used 

since this approach fits the stochastic nature of random utility models as it is discussed in 

Section 2.3. This function can be calculated using different sources of behavioural data 

collected with different research techniques and methods as discussed in Section 2.4 

(Kinateder et al. 2014; Lovreglio 2014). 

 

Once the model has been estimated, it is necessary to verify whether the factors included 

in the model statistically affect the decision and if the estimated parameters have values 

coherent with the behavioural assumptions. At this stage, modellers need to identify 

potential errors in the first model specification due, for instance, to co-variation between 

two independent variables included in the model or possible interactions between 

variables. Therefore, the modeller may need to specify several other models to identify 

the final one, which is eventually consistent and coherent with the behavioural 

assumptions (i.e. behavioural analysis) and only including the factors that actually affect 

the choice. This iterative procedure allows (a) the verification whether a factor affects the 
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choice, (b) the calculation of the intensity of this influence and (c) the assessment of the 

uncertainty of this influence (i.e. constant vs. parameter parameters, see Section 2.3). 

 

 

2.3 Model Formulation 
 

Starting from the assumptions introduced in Section 2.1.1, different modelling 

frameworks can be developed depending on (Walker & Ben-Akiva 2002): 

 

1. the assumptions made on the distribution of the random parts 𝜀𝑗𝑞 introduced in 

Equation 2.1 (e.g. normal distribution, Gumbel distribution, etc.); 

2. the assumptions made on the estimated parameters (constant over the 

population vs. randomly distributed); 

3. the assumptions made on the 𝑿 independent variables affecting the 𝑈𝑗𝑞 since 

these variable could be observable or latent (i.e. hybrid choice models); 

4. the assumptions made on the segmentation of the populations since it is possible 

to segment the population using both classes defined by observable decision-

makers’ factors, such as demographics, and latent classes (i.e. latent class 

models). 

 

The ‘classic’ random utility models allows the estimation of a single latent factor (i.e. the 

decision-makers’ utility𝑈𝑗𝑞) by maximizing the likelihood of the preference indicators 

which could be from Stated Preferences (SPs), Revealed Preferences (RPs) or a 

combination of both as illustrated in Figure 2.4 (refer to Section 2.4.2 for a discussion of 

these two different sources of data) (Walker & Ben-Akiva 2002; Train & Wilson 2008). 

The functional form of the probability of choosing the j alternative by q decision-maker 

depends on the hypothesis on the distribution of the random parts 𝜀𝑗𝑞. The widely used 

multinomial logit models: 

 

𝑃𝑗𝑞 = 
𝑒𝑉𝑗𝑞(𝜷|𝒙)

∑ 𝑒𝑉𝑘𝑞(𝜷|𝒙) 𝑘

 Eq. 2.3 
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derives from assuming that the random parts 𝜀𝑗𝑞 have a Gumbel distribution with mean 0 

and variance π2/6  and these are independent and homoscedastic (Ortuzar & Willumsen 

2011). The main limitation of this formulation is that it is not flexible enough to deal with 

the presence of correlated alternatives (e.g. independence of irrelevant alternatives). This 

formulation satisfies the property of Independence of Irrelevant Alternatives (IIA: 𝑃𝑖𝑞/𝑃𝑗𝑞 is 

independent of the remaining probabilities). This property is the direct consequence of the 

initial assumption that the random parts 𝜀𝑗𝑞 are independent and homoscedastic and 

could make the model fail in the presence of correlated alternatives (see the well-known 

example of Red Bus/Blue Bus) (Greene 2011; Ortuzar & Willumsen 2011). Moreover, this 

classic model allows the heterogeneity among decision-makers to be estimated only by 

using observable personal factors defining them (i.e. gender, age, etc.).  

 

 

Fig. 2.4 – Generalized random utility model by Walker & Ben-Akiva (2002). The grey boxes in the figure 

define the classic and mixed random utility model. Picture source:  (Lovreglio, Borri, et al. 2015) 

 

To date, several models have been developed to relax this assumption. The Mixed Logit 

Model is one of the most advanced attempts to solve the issue concerning the correlated 

alternatives by introducing flexible disturbances (Walker & Ben-Akiva 2002; Train 2009). 

This is formally addressed by assuming that at least one component of β parameters in 

Equations 2.3 is randomly distributed. This property of Mixed Logit Models allows the 
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simulation of the heterogeneity of the taste of the decision-makers which cannot be 

described using observable factors (Train 2009).This modelling framework has been 

proved to be flexible enough to approximate any random utility model (McFadden & Train 

2000). 

 

Under the assumption of random β parameters, the probability of choosing the j 

alternative by q decision-maker introduced in Equation 2.3 can be rewritten as: 

 

𝑃𝑗𝑞̃ = ∫
𝑒𝑉𝑗𝑞(𝜷|𝒙)

∑ 𝑒𝑉𝑘𝑞(𝜷|𝒙)𝑘
 𝑓(𝜷|𝜶)𝑑𝜷 Eq. 2.4 

 

where f is the probability density function of the 𝜷 parameters, and 𝜶 is the set of 

parameters identifying f (Train 2009; Greene & Hensher 2010). In general, Mixed Logit 

Models have no closed solution. However, the probabilities can be estimated by using 

Monte Carlo techniques. Let βz be vectors of β parameters drawn from f. An estimation of 

the probability (𝑃𝑗𝑞̃
̃ ) that the q decision-maker selects the j alternative can be calculated 

by randomly drawing R vectors βz, calculating the corresponding values of 𝑃𝑗𝑞 , and then 

averaging according to the following equation (Train 2009; Greene & Hensher 2010): 

 

𝑃𝑗𝑞̃
̃ = 

1

𝑅
∑𝑃𝑗𝑞(𝜷𝑧)

𝑅

𝑧

 Eq. 2.5 

 

𝑃𝑗𝑞̃
̃  can be then used  to estimate 𝜶 by maximising the likelihood function. The likelihood 

for Q decision-makers can be written as: 

 

𝐿 =∏∑𝑦𝑗𝑞 ∙

𝐽𝑞

𝑗

𝑄

𝑞=1

𝑃𝑗𝑞̃
̃  Eq. 2.6 

 

where 𝑦𝑗𝑞 is equal to 1 if the q decision-maker (q=1,…,Q) selects the j alternative 

(j=1,…,Jq), otherwise it is 0. Numerous techniques are available in the literature to solve 
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the likelihood maximisation problem. Readers can refer to Greene (2011) for a review of 

these optimisation tools. 

 

Several other solutions have been introduced into the literature to investigate unobserved 

heterogeneity among decision-makers as illustrated in Figure 2.4. In this thesis, the 

mathematical framework of the Mixed Logit Models is used for several reasons.   

 

The main motivation is that this modelling approach allows the simulation of both sources 

of behavioural uncertainty (Intrinsic Behavioural Uncertainty and Perceptions and 

Preferences Behavioural Uncertainty) introduced in Section 2.1.3. In fact, the ‘classic’ 

logit approach considers Intrinsic Behavioural Uncertainty by introducing the random 

parts 𝜀𝑗𝑞 whereas the random parameter assumption of the Mixed Logit Models allows 

Perceptions and Preferences Behavioural Uncertainty to be taken into account. 

 

On the implementation side, well-established techniques exist to calibrate random 

parameter logit models as indicated by Equations 2.5 and 2.6. These models can be 

calibrated using both SPs and RPs as discussed in Section 2.4.2.  

 

Finally, this modelling solution allows the definition of a mathematical formulation for the 

conceptual model introduced in Figure 1.7. This model identifies three stages for the 

decision-making process: information perception and processing, situation assessment, 

action selection. These stages have a specific meaning when Random Utility Theory is 

used to simulate the choices (see Figure 2.5).  The first stage (information perception and 

processing) consists of the assessment of the external factors (𝒙𝑬) affecting the decision. 

In other words, before making a choice, a decision-maker needs to quantify the external 

factors affecting the decision. Once these pieces of information have been processed, the 

decision-maker needs to assess the global situation. Following Random Utility Theory 

assumptions, this task is carried out by assigning a utility to each possible discrete 

alternative. This utility can be a function of both external factors (𝒙𝑬) and internal factors 

(𝒙𝑰). Eventually, the decision-maker chooses an alternative (i.e. an action) by selecting 

the one having the maximum utility. Figure 2.5 also illustrates the impact of the two 

sources of behavioural uncertainty on the decision-making process.  
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Fig. 2.5 – Decision-making process based on the random parameter logit (IBU: Intrinsic Behavioural 

Uncertainty; PPBE: Perceptions and Preferences Behavioural Uncertainty) 

 

Perceptions and Preferences Behavioural Uncertainty affects the first two stages of the 

decision-making process through the random β parameters. First, this randomness takes 

into account that different decision-makers can have different quantitative estimates of the 

same external factors (𝒙𝑬) and that these estimations can be different from the actual 

values. For instance, considering an exit choice situation in which the decision is affected 

by the number of people close to the exits, different decision makers can have a different 

perception of the number of people close to each exit. In other words, the actual number 

of people close to the exits is internalized by the decision makers becoming information 

affecting the choice. In this process, the original number can be subject to change since 

the every decision maker can have a different perception of this number. Then, the 

random parameters consider that a certain factor might have different importance to 

different evacuees to defining the utility for the available alternative. Using the same 

example of the exit choice, some decision-makers could be positively affected by the 

number of people close to an exit manifesting herding behaviour (i.e. the decision-maker 

is attracted by the most crowded exit) whereas others could be negatively affected 

showing crowd-avoidance behaviour (Lovreglio, Fonzone, et al. 2016). Therefore, the 

utilities associated to these exits differ between the decision-makers. 
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Intrinsic Behavioural Uncertainty affects the last stage of the decision-making (i.e. action 

selection) through the random parts 𝜀𝑗𝑞. From a modeller’s point of view, it possible to 

calculate the probability that an alternative is chosen since it is not possible to know the 

exact utility associated to each alternative. Therefore, the choice can be selected using a 

random number generator and the probabilities (P1, P2, …,Pn) associated to the n 

available alternatives (A1, A2, …, An) as indicated in Figure 2.6. This allows the simulation 

of both (a) the uncertainty related to choices taken by different decision-makers and (b) 

the uncertainty of the choices taken by the same decision-makers at different times. 

 

 

Fig. 2.6 – Alternative selections according Random Utility Theory. 

 

 

2.4 Data-Collection Approaches 
 

 The methodological steps introduced in this work highlights that there is a need 

for behavioural data (i.e. data about individuals’ behaviour and factors affecting them) to 

develop/calibrate new decision-making models based on Random Utility Theory (see 

Figure 2.3). These data can be divided into three broad categories: 

 

1. data on the external factors (𝒙𝑬); 

2. data on the internal factors (𝒙𝑰); 

3. Choices (𝑦𝑖𝑞). 
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The first type of data includes all of the information concerning the social/physical 

environment, i.e. external factors (𝒙𝑬). These data should include all the pieces of 

information regarding the factors that may potentially affect the choice. This is because it 

is not possible to know a priori whether a factor has affected the choice in the investigated 

situation. 

 

The second type of data includes information regarding the decision-makers’ 

demographics and personal characteristics, i.e. internal factors (𝒙𝑰). These data are often 

used to segment the sample by investigating systematic differences between evacuees 

(Lovreglio, Borri, et al. 2015; Lovreglio, Fonzone, et al. 2016). 

 

Both external and internal factors can be seen as independent variables of decision-

making models since it is possible to calculate the utility functions associated with the 

available alternatives through them and in turn, the probabilities that such alternatives can 

be selected (see Equation 2.3). In contrast, the choices (𝑦𝑖𝑞) are a subset of the 

behavioural data representing the dependent variable of the decision-making models. 

 

Different techniques can be used to collect behavioural data. These techniques (i.e. 

questionnaires, interviews and observations) are discussed in Section 2.4.1 whereas the 

types of choices/preferences that can be collected (i.e. Stated Preferences and Revealed 

Preferences) are discussed in Section 2.4.2. Finally, the research methods used to 

investigate human behaviour in fire and the criteria to assess the quality of the 

behavioural studies and data are introduced in Sections 2.4.3 and 2.4.4 respectively. 

 

 

2.4.1 Data Collection Techniques 
 

Data collection techniques are the measuring instruments that researchers can use to 

collect any type of behavioural data. These techniques include questionnaires, interviews 

and observations. Researchers can choose to use only one of these tools or a 

combination of them to improve the quality of behavioural research (Nilsson 2009). 
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Questionnaires are a set of questions that people can answer by writing (i.e. paper 

questionnaires) or clicking and typing (i.e. digital questionnaires). The questions included 

in a questionnaire can be open or closed. The former questions require respondents to 

write/type their own answers whereas the latter questions provide respondents with 

response options. Foddy (1993) has identified several pros and cons of both open and 

closed questions. On one hand, open questions allow respondents to state what they 

have in mind without being affected by the options suggested by the researchers. 

Therefore, the answer should ideally reflect what is important and relevant to the 

respondents. On the other hand, respondents may be inhibited to mention the most 

relevant aspects affecting their behaviour. In fact, they might not mention what they 

perceive as obvious. Therefore, open questions need to be coded by researchers to 

enable quantitative/qualitative analysis. This coding process risks relevant data being lost 

or misrepresented, creating measurement uncertainty (Ronchi et al. 2013). Such an issue 

does not affect closed questions since the coding is already determined by the available 

options, even though the question may miss relevant options (Nilsson 2009). Another 

disadvantage of closed questions is that the options may inform the respondents about 

the purpose of the questionnaire and the type of answers that are expected. However, a 

positive aspect of closed questions is that options work as memory cues making 

respondents remember answers that could otherwise be forgotten (Foddy 1993). 

 

Interviews present many similar features of questionnaires but they involve oral 

communication. This feature highlights that this data collection technique depends on the 

interpersonal skills and training of the interviewers. Therefore, the risk of introducing 

interviewer bias must be taken into account. There are different types of interviews since 

they can differ in the number of interviewees involved (i.e. individual vs. group interviews), 

the structure (i.e. structured, semi-structured and unstructured interviews) and the type of 

questions (open vs. closed) (Fowler & Mangione 1990). Considering the similarities 

between interviews and questionnaires, many of the issues already discussed for 

questionnaires are relevant for interviews (see the discussion about open vs. closed 

questions). However, one of the advantages of interviewers over questionnaires is that 

interviewers have the possibility of asking probing questions to clarify or explore a 
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response deeply. These questions should be asked in standardized ways to minimise 

interviewer bias (Fowler & Mangione 1990; Foddy 1993). 

 

Observations refer to the analysis of the behaviour of people involved in real or 

experimental tasks. Observations involve some degree of judgement. Therefore, this data 

collection technique is not free from error since observers may influence the outcomes of 

the analysis depending on their expectations and abilities (Nilsson 2009). Hence, 

observations by different researchers can give different results. To cope with this issue, 

different observation techniques are available to standardize the procedures used in the 

analysis. The main advantage of observations over interviews and questionnaires is that 

they allow the investigation of factors which participants in experimental or real situations 

are not aware or willing to admit. For instance, Latané and Darley (1968) carried out  

experiments to investigate social interactions during fire emergency and observed that 

participants were either unaware or unwilling to admit that they were affected by others. 

 

It is possible to summarize by stating that each data collection technique presents 

advantages and disadvantages. A possible solution to improve the ‘quality’ of behavioural 

data can be to combine data collection techniques since they can often complement each 

other (Yin 2003). For example, interviews can be combined with observations to 

investigate in depth the behaviour observed during an experiment. This combined 

approach could also be useful to verify the validity of behavioural data. For instance, 

when both results from questionnaires and observations support the occurrence of the 

same particular behaviour, then this behavioural information is more likely to be true than 

behavioural information obtained with a singular data collection technique. 

 

 

2.4.2 Stated and Revealed Preferences 
 

The previous section discusses the techniques that can be used to investigate 

human behaviour. However, the literature on decision-making data collection identifies 

two specific types of choice data (SPs and RPs) and classifies the existing techniques 

into two classes depending on the type of choice data collected through these techniques. 
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SPs techniques refer to a set of techniques aimed at collecting choices stated by 

decision-makers about their preferences in hypothetical scenarios (Cascetta 2009; 

Ortuzar & Willumsen 2011). In other words, decision-makers predict what their choices 

would be if they were living the hypothetical scenarios. Decision-makers can be asked: 

 

a) to choose which option they would adopt in that context (Stated Choice Studies); 

b) to rate or rank the available options according to their preference (Conjoint 

Analysis); 

c) to state their willingness to pay for various policies or product options (Contingent 

Valuations). 

 

In the following part, contingent valuations are not taken into account. Even though these 

valuations can be useful in marketing and transportation research, these are not found 

relevant for the purpose of developing new evacuation decision-making models. Stated 

choice studies are similar to conjoint analyses since in both cases the interviewees are 

presented with a number of hypothetical alternatives; however, the two methods differ in 

terms of the response metric. One of the most important criticisms raised against conjoint 

analyses is that in real life different interviewees would approach rating and ranking tasks 

in psychologically different manners. Stated choice studies avoid this issue by asking 

interviewees to select only the best alternative (Ortuzar & Willumsen 2011).Therefore, SP 

data can be collected using questionnaires and interviews. 

 

RP techniques allow the collection of data about ‘actual choices’ made by decision-

makers (Ortuzar & Willumsen 2011). Normally, it is possible to obtain data on what 

decision-makers report they have done in their past to cope with either specific situations 

they have experienced or pre-assigned tasks. For instance, RPs can include choices that 

an evacuee made in a real or experimental evacuation. Therefore, both questionnaires 

and interviews can be used to investigate these preferences. However, these data can 

also be collected independently by a researcher making observations.  Different sources, 

such as videos, can be used for this purpose. For instance, considering the case of exit 

choice during an evacuation, the exit selected by an evacuee can be inferred from 
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observing his/her trajectory. In Figure 2.7, an observer can assume that at time t1 the 

evacuee selected Exit 1 and he/she changed his/her mind at time t2 while heading 

towards the exit. Therefore, RP data can be collected using questionnaires, interviews 

and observations. 

 

 

Fig. 2.7 – Revealed exit choice using the evacuees’ trajectory 

 

Several authors, such as Cascetta (2009), Ortuzar and Willumsen (2011), have already 

discussed the pros and cons of using both SP and RP techniques for transportation 

modelling purposes. They argue that: 

 

1. RPs could not provide sufficient variability to construct good models for several 

reasons: limited number of observations, limited variability of the factors affecting 

the choice, etc. Therefore, these data could be poor in terms of statistical 

efficiency. 

2. RPs may be dominated by a few factors, which could make it difficult to detect 

the potential effect of other secondary factors (e.g. public-transport information 

services). 

3. RP surveys cannot be applied to investigate entirely new policies and 

engineering solutions, i.e. the investigation of alternatives not available at the 

time of the survey (e.g. new transport modes or services such as air 

conditioning). 
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4. SP surveys can be used to collect more information than RP surveys since each 

interviewee is usually asked about several choice contexts. 

 

It is worth highlighting that this comparison between SP and RP techniques is made here 

in the transportation field. In making this comparison, the authors only considered RPs 

collected in real-life circumstances. In fact, referring to RPs Ortuzar and Willumsen (2011) 

state that: 

 

“(RPs) limitations would be surmounted if we could undertake real-life controlled 

experiments within cities or transport systems, but the opportunities for doing this in 

practice are very limited. Thus, where data from real markets is not available for 

predicting behaviour or eliciting reliable preference functions, researchers have had to 

turn to stated preference (SP) methods” (Ortuzar & Willumsen 2011, p. 95) 

 

Therefore, the comparison refers more to the research methods (real life scenarios vs. 

hypothetical scenarios) associated to SP and RP techniques than the techniques 

themselves. In contrast, in the field of human behaviour in fire many more research 

methods can be used to investigate the decision-making, combining them with both SP 

and RP techniques. 

 

The next section aims at providing a summary of the research methods that can be used 

to collect data on evacuation behaviour during emergency and whether/how these can be 

coupled with SP and RP techniques. In the following part of this thesis, SP and RP 

techniques are considered independently from the research methods with which they are 

coupled.  

 

 

2.4.3 Research Methods 
 

Different empirical research methods can be used to collect data on human 

behaviour during evacuations. These methods include both the investigation of real world 

emergencies (i.e. case studies) and experiments. Different classifications have been 



 51 

proposed in the literature. The classification provided in this section is inspired mainly by 

the work of Nilsson (2009), Kinateder et al. (2014) and Nilsson and Kinateder (2015). 

 

Case studies refer to the quantitative/qualitative analysis of real world emergencies. 

Therefore, human behaviour is investigated in a real-life context, i.e. the context is not 

artificial or modified by the researchers (Nilsson 2009). Examples of case studies are the 

official investigations of accidents, which can provide valuable insights into human 

behaviour in these events. Behavioural data can be collected by interviewing the surviving 

evacuees, using questionnaires and analysing video-recordings of closed-circuit 

television. All these techniques allow the choices taken by evacuees (RPs) to be 

investigated.  

 

Human behaviour experiments refer to a range of different research methods. These are 

often divided into two broad categories, namely field and laboratory experiments. The 

former experiments are carried out in real-life settings whereas the latter are in a 

controlled laboratory environment (Christensen 2007). In both cases, the participants are 

exposed to a situation that is controlled by the researchers. The degree of control is 

significantly affected by the exact nature of the experiment. For instance, field 

experiments can include many factors, which cannot be manipulated or removed by the 

researchers whereas laboratory conditions could allow them to do so (Nilsson 2009). 

 

Laboratory experiments are carried out in controlled environments that participants do not 

encounter during every day routines (Christensen 2007). This means that participants 

have to be recruited for the experiment and, therefore, they are very often aware that they 

are taking part in a study. In some cases, deceptions can be used by providing 

participants with misinformation about the real purpose of the study. The environments in 

which participants are confronted with these scenarios can be physical (i.e. classical 

laboratory studies) and virtual (i.e. VR experiments). VR experiments can be both 

immersive and non-immersive. In the former type of experiment, participants are 

immersed in a computer generated virtual environment. To date, this can be done using 

different VR technologies, such as head mounted displays or Cave Automatic Virtual 

Environments. In the latter type of experiments, less immersive techniques, such as 
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desktop computers, are used. One advantage of laboratory experiments over field 

experiments is the possibility of effectively isolating an aspect of interest, eliminating other 

confounding variables that could be present in field experiments (i.e. high experimental 

control).  

 

Field experiments are typically carried out in real world settings, such as real buildings 

and tunnels, which may be less controlled environments than laboratory settings. 

However, the threshold between laboratory and field experiments is not always clear 

(Harrison & List 2004). In fact, according the definition by Christensen (2007), the 

difference consists of whether the experimental environment is encountered by 

participants during every day routines or not. Therefore, an evacuation experiment in a 

real tunnel with participants who have been recruited and informed about the study may 

be considered as a laboratory experiment even though it is performed in a realistic field 

enviroment. This is due to the fact that the tunnel may not be part of the participants’ 

everyday routines (Nilsson 2009). Harrison and List (2004) argue that many other aspects 

need to be considered to provide a more effective definition for field experiments. An 

effective definition for human behaviour experiments during fire evacuations is the one 

provided by Nilsson (2009): 

 

“Field experiments are defined as experiments that are performed in a field environment, 

e.g., a real building or tunnel, that the participants encounter or could encounter during 

everyday routines. This means that an evacuation experiment that is performed in an 

office building with participants who are unrepresentative for the setting, e.g., students 

instead of office workers, is not a field experiment.” (Nilsson 2009, p. 18) 

 

Using this definition, it is possible to argue that both evacuation drills can be field 

experiments or laboratory experiments depending of the familiarity of the population with 

the environment. 

 

Normally, both laboratory and field experiments investigate the actual behaviour/choices 

made by participants, collecting data through questionnaires, interviews and observations 
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from video or more sophisticated sensor-based techniques (Ingmarsson et al. 2015). 

Therefore, these research methods support the collection of RPs. 

 

Hypothetical scenario experiments are an alternative experimental method to collect 

behavioural data. In these experiments, participants make predictions about their 

behaviour/choices in emergencies. Therefore, the choices are not revealed but are 

predicted/stated by the participants (SPs). The hypothetical scenarios can be of different 

forms, using written descriptions, pictures, or other sensory stimuli in a real or virtual 

environment. These studies can be performed in very different locations depending on the 

approach used to present the hypothetical scenarios. In fact, paper and digital surveys 

can be distributed using mail or the Internet (i.e. online surveys). To increase the realism 

of the scenarios immersive and non-immersive VR and real settings can also be used. 

 

This section shows that it is possible to collect data to develop new decision-making 

models using different sources of data. However, modellers should know their pros and 

cons. The next section introduces the criteria to assess the ‘quality’ of behavioural data 

using different research methods. 

 

 

2.4.4 Validity of Behavioural Data 
 

Several sources of data can be used to develop decision-making models and 

criteria are necessary to evaluate the quality of behavioural studies and the data collected 

during such studies. In this section the criteria used by Nilsson (2009), Kinateder et al. 

(2014) and Nilsson and Kinateder (2015) are introduced and described. 

 

Validity refers to the correctness and accuracy of the findings, i.e. the extent to which a 

study measures what it is supposed to measure (Nilsson 2009; Nilsson & Kinateder 

2015). Different types of validity have been proposed in the literature: internal validity, 

external validity and ecological validity. 
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Internal validity refers to the degree to which a method allows causal relationships to be 

identified among variables (Christensen 2007). In other words, it assesses the extent to 

which the relationship between dependent and independent variables can be accurately 

identified. However, even if a relationship is identified in an experimental setting, it does 

not necessarily mean that this result can be generalized to a real-life setting (see 

ecological validity for this purpose). Therefore, the assessment of internal validity can rely 

on the aims and objectives of a particular study. For instance, if an experimental study is 

intended to assess the effectiveness of different alarm systems, the internal validity of 

unannounced experiments is greater than that of pre-announced experiments. In fact, the 

awareness of the participants could affect the relationship between types of alarm 

(independent variable) and the participants’ response time (dependent variable) and 

therefore awareness can reduce the internal validity.   

 

External validity is the criterion aimed at assessing whether the results of a study can be 

transferred/generalized to different domain, e.g. people, settings or times, etc. 

(Christensen 2007). For instance, when developing a decision-making model using data 

collected in a theatre, the external validity gives a measure of the boundaries in which the 

model can be used by answering questions such as: Can this model represent the 

behaviour of a decision-maker in any other theatre having the same target population? 

Can this model represent the behaviour of a different population in the same theatre? 

 

Both external and internal validity depend mainly on experimental procedure and set-up 

rather than on the research methods per se (Nilsson & Kinateder 2015). Therefore, a 

comparison between different research methods cannot be made using these two validity 

criteria. The third type of validity, ecological validity, can pursue this objective. Ecological 

validity assesses the degree with which a research method can represent the real word 

scenario under investigation (Brewer et al. 2000). In other words, this criterion is used to 

evaluate the gap between experimental situations and real situations. Therefore, it 

involves evaluating whether findings from experiments hold true in real life. 
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The research methods can be compared/selected considering other criteria, such as time 

and cost intensity for data collection, experimental control, ethical issues, etc. (Kinateder 

et al. 2014).  

 

Experimental control refers to the degree to which researchers can control both the 

experimental procedure and the variables affecting the phenomenon under investigation. 

In fact, there could be many variables that can potentially affect a specific choice or 

behaviour and are not of primary interest, e.g. confounding variables (Kinateder et al. 

2014). Experimental control could have a strong impact on the internal validity of 

experiments since high experimental control could allow researchers to directly 

manipulate the independent variable under investigation.  

 

Finally, experiments with humans introduce several ethical issues. In fact, it is necessary 

to consider adequately the risks of injury and possible violations of participants’ integrity 

and rights (Nilsson 2009). Even though studies on human behaviour in fire are ruled by 

ethical standards (e.g. Nuremberg Code, Helsinki Declaration , etc.), there is still an open 

discussion on ethics in human behaviour in fire research (Boyce & Nilsson 2015). 

Readers can refer to Nilsson (2009) and Boyce and Nilsson (2015) for a deeper insight 

into the possible ethical issues related to research on human behaviour in fire. 

 

 

2.5 Selection of Research Strategy 
 

 The techniques and research methods for behavioural data collection have 

advantages and disadvantages that need to be taken into account when they are used to 

pursue a research objective. The selection of a research strategy (a combination of 

research methods and data collection techniques) depends on both research objectives 

and further ‘boundary conditions’ (i.e. time and cost intensity, experimental control, ethical 

issues, etc.). 

 

The first step towards the development of a research strategy is to assess which 

techniques and methods are suitable for the research objectives. The pros and cons of 
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different strategies need to be taken into account by researchers before selecting the final 

strategy. 

 

 

2.5.1 Research Strategy Comparison 
 

Case studies and unannounced evacuation drills represent the best solution in 

terms of ecological validity. In fact, these methods allow evacuees to interact with real 

word scenarios. Therefore, their behaviour is not biased by the awareness that they are 

participating in experiments. Despite the highest level of ecological validity, case studies 

have the limitation that data from real accidents are often difficult to obtain because of 

privacy/ethical issues. Moreover, even when real data (in the form of videos) are 

available, there are two further severe limitations. Firstly, researchers have no control 

over the evacuee sample and the variables affecting the choices. Secondly, selected 

choices cannot be directly analysed but only inferred from the evacuees’ behaviour in the 

emergency (observations), thus increasing the measurement uncertainty. For instance, 

considering the example in Figure 2.7, the decision maker could have already chosen Exit 

2 at time t1 following that trajectory for any other reason whereas an external observer 

could interpret that he chose Exit 1 at time t1 and then Exit 2 at time t2. Questionnaires 

and interviews with people experiencing the evacuation may help overcome the latter 

limitation, but interviews can hardly be related to the data extracted from the videos 

(Lovreglio, Borri, et al. 2015). Finally, case studies are not appropriate to investigate the 

impact of emergency procedures and systems which are not yet implemented in the real 

world (Nilsson 2009).  

 

Evacuation drills could overcome the limitations of case studies since they allow 

researchers to have experimental control. In these types of experiment, researchers could 

have the possibility of modifying and control both evacuation procedures and systems. 

However, there are also limitations affecting this research method. The main limitation is 

related to the high costs of performing such field experiments (Kinateder et al. 2014; 

Gwynne 2015). Moreover, high frequencies of evacuation drills in buildings can 

encourage a false sense of safety among evacuees during real accidents since they 
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could think they were once again experiencing a false emergency (Gwynne 2015). A final 

limitation is the limited experimental control during such experiments (Kinateder et al. 

2014). For instance, it is not possible to have complete control over smoke and the social 

factors that could affect choices. One solution, which has been used to cope with the 

latter issues, is the use of actors like in the experiments conducted by Latane & Darley 

(1968). The impossibility of having limited control of the experiment can have a negative 

impact on the reliability (i.e. degree of repeatability of study in order to get similar results) 

of the dataset developed using these experiments as discussed by Nilsson and Kinateder 

(2015). For instance, the impossibility of having full control of smoke makes it almost 

impossible to repeat an experiment with the same visibility condition as a previous one. 

 

VR experiments represent one of the best compromises between experimental control 

and ecological validity (Kinateder et al. 2014; Nilsson & Kinateder 2015). In these 

experiments the experimental control is very high since the virtual physical social 

environment is completely controlled by researchers. The assessment of ecological 

validity in these experiments is still an open issue in the literature (Nilsson & Kinateder 

2015). Even though several experiments have shown similar behavioural patterns 

between participants in real and virtual environments, the assessment of validation VR 

experiments is still under investigation. The future challenges for this research method 

which may improve ecological validity are mainly sensorial, e.g. the integrations of 

olfactory stimuli and the perception of touch, the substitution of the game controller (i.e. 

joypad) with more advanced moving controller systems (i.e. wireless HMD), etc. (Nilsson 

& Kinateder 2015). A final limitation of immersive VR is that, as in any other laboratory 

experiment, the participants are often college or university students, since they are easy 

for researchers to recruit, limiting the experimental cost and time. Using non-immersive 

VR technology (i.e. desktop computers) could simplify the recruitment problems and 

reduce the cost since the experimental task can be distributed using the Internet 

(Lovreglio, Borri, et al. 2014). 

 

Hypothetical scenario experiments (or SP experiments) are the type of experiments that 

allow direct control of all the factors deemed relevant and data collection is relatively 

quick and cheap (costs can increase though when face-to-face interviews are used to 
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administer the survey). The ecological validity of these experiments depends mainly on 

the approach used to present the hypothetical scenarios. Written descriptions, or pictures 

have a lower ecological validity whereas videos allow higher ecological validity, especially 

when administered using immersive VR technology. SP experiments allow researchers to 

have experimental control of the factors that can affect choices, which is higher than that 

of RP experiments. Therefore, this allows sufficient variability of the independent 

variables to construct and calibrate good choice models (Ortuzar & Willumsen 2011). This 

feature can be fundamental whenever researchers need to investigate the impact of a 

great number of factors on the choices. For this purpose, different survey design 

strategies (i.e. orthogonal design, efficient design, etc.) have been proposed in the 

literature (Rose et al. 2008). 

 

 

2.5.2 Selected Choices and Strategies 
 

All the research methods presented in Section 2.4.3 are potentially suitable to 

collect data aimed at developing new decision-making models based on Random Utility 

Theory, however, several other objectives may lead researchers to prefer one 

method/technique over others. 

 

In this thesis, different strategies are tested in the three case studies introduced in 

Chapters 3, 4 and 5. This is done to investigate the pros and cons of different strategies 

and the impact of these strategies on model calibration/development and, validity in line 

with the third objective of this thesis. 

 

Among all the decisions described in Section 2.1.2, this thesis aims at developing a 

decision-making model for the following choices: 

 

a) Decision to start investigating and evacuating (Case Study 1); 

b) Exit choice (Case Study 2); 

c) Local movement choices (Case Study 3). 
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These decisions are critical during the different stages of the evacuations described in 

Section 1.1.1. In fact, the decision to start investigating and evacuating are the main 

decision affecting evacuees’ behaviour during the recognition time since all the activities 

carried out depend on their behavioural state (i.e. normal, investigating and evacuating). 

Evacuation decision is also important since it draws a line between recognition and 

response activity. Among all the response activities, one of the most important decisions 

is the definition of the route strategy. The choice of a route may involve global and local 

decisions between alternative exits from an enclosed environment. Finally, when a 

route/exit has been selected and evacuees start moving toward a safe place (i.e. 

movement stage), evacuees need to move towards their objectives, interacting with the 

social and physical environment surrounding them and making local movement choices. 

 

In this thesis, three different strategies are selected for the three case studies under 

investigation, providing deeper insight into the more specific potentialities and limitations 

of different strategies to calibrate decision-making models based on Random Utility 

Theory. 

 

Case Study 1 investigates the possibility of using Random Utility Theory to model the 

decision to start investigating and evacuating using observations (RPs) of evacuees 

participating in announced evacuation drills in a cinema theatre. This dataset includes five 

unannounced evacuation trials and was carried out in a cinema theatre in Sweden 

involving a total of 571 participants (Bayer & Rejnö 1999). The selected trials are those 

which were analysed by Nilsson and Johansson (2009) using a defined video analysis 

procedure. 

 

Case Study 2 investigates the impact of many social/physical factors on an exit choice 

model based on Random Utility Theory and the behavioural uncertainty affecting this 

choice. This goal is pursued using questionnaires and hypothetical scenario experiments 

(SPs survey). The SP survey has been developed with the collaboration of the Transport 

Research Institute of Edinburgh Napier University (UK) and the Department of 

Transportation and Projects and Processes Technology of University of Cantabria 

(Spain). This dataset includes SPs from 1,503 respondents from all over the world for 12 
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hypothetical evacuation scenarios illustrating a metro station having two available exits. 

The survey administered the hypothetical evacuation using pre-recorded videos and was 

distributed using the Internet (i.e. non-immersive VR). 

 

Case Study 3 investigates the use of the formulations provided by Random Utility Theory 

to study the evacuees’ local movement choices. Local movement decision-making is the 

most investigated subject in the field of human behaviour in fire (Kuligowski 2013; 

Gwynne et al. 2015). However, despite the great interest in the potentialities of the use of 

a discrete choice model based on logistic assumptions (i.e. the selection is based on the 

logistic formulation), no calibration procedure has been introduced to estimate the 

parameters of these models. This case study aims at filling this gap by introducing a 

procedure based on the likelihood function optimization built using real evacuees’ 

decisions. This goal is pursued using observations (RPs) of participants in an immersive 

VR experiment. The dataset includes the trajectories of 96 participants, who were asked 

to evacuate from a road tunnel interacting with the physical virtual environment using a 

joypad. 

 

Table 3.1 shows a summary description of the three case studies. An assessment of the 

ecological validity and the experimental control is also provided for each case study. The 

scale used in this work is not absolute but relative to the three case studies to rank them. 

Considering the ecological validity, it is possible to argue that the first case study 

(unannounced evacuation drill) has the highest ecological validity followed by the third 

case study (Immersive VR experiment) and the second one (Online survey). Focusing on 

the experimental control, it is possible to see that the third case study has the highest 

experimental control since the experiment is carried out with VR technology in a 

laboratory. Therefore, the researchers had the possibility of having high control of the VR 

scenario (i.e. how the scenario evolves over time) and the experimental procedure. Even 

though VR is used in case study 2, the experimental control of this case study is lower 

than that in the third case study because researchers could only control the VR scenario 

but the experimental procedure was controllable since the survey was distributed using 

the Internet. The first case study has the lowest experimental control since the researcher 
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could only control the physical factors (alarm types) but they could not control the social 

factors. 

 

Tab. 3.1 – Summary of the three case studies 

Case 
Study 

Choice 
Research 
Method 

Data 
Collection 
Technique 

Evacuation 
Scenario 

Sample 
Size 

Ecological 
Validity 

Exp. 
Control 

1 
Start 

investigating and 
evacuating 

Unannounced 
evacuation 

drills 
Observations  

Cinema 
theatre 

571 High Low 

2 Exit Online survey Questionnaire  Metro Station 1503 Low Medium 

3 Local movement 
Immersive VR 

experiment 
Observations  Road Tunnel 96 Medium High 

 

The results of these three case studies are available as journal papers: 

 

Case Study 1: 

Lovreglio, R., Ronchi, E. & Nilsson, D., 2015. A model of the decision-making process 

during pre-evacuation. Fire Safety Journal, Vol. 78, pp. 168–179.doi: 

10.1016/j.firesaf.2015.07.001 

 

Case Study 2: 

Lovreglio, R., Fonzone, A. & dell’Olio, L., 2015. A Mixed Logit Model for Predicting Exit 

Choice during Building Evacuations. Under review for Transportation Research Part A: 

Policy and Practice. 

 

Case Study 3: 

Lovreglio, R., Ronchi, E. & Nilsson, D., 2015. Calibrating Floor Field Cellular Automaton 

Models for Pedestrian Dynamics by Using Likelihood Function Optimization. Physica A: 

Statistical Mechanics and its Applications, Vol. 438, pp. 308-320.doi: 

10.1016/j.physa.2015.06.040 
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2.6 Limitations 
 

Like all research studies, this thesis presents limitations. The identification of 

these limitations is fundamental to have a correct interpretation of the results obtained 

with the methodology introduced in this chapter. The limitations of this research are 

related to the decision-making theory (i.e. Random Utility Theory), modelling framework 

(i.e. Mixed Logit Models) and the source of data used to develop new evacuation 

decision-making models. 

 

 

2.6.1 Limitations of Random Utility Theory 
 

Random Utility Theory is the most common theoretical framework/paradigm to 

model discrete choices (Ortuzar & Willumsen 2011). Its validity and limitations have been 

investigated in many different fields such as energy, transportation, environmental 

studies, health, marketing, etc. (Train 2009). As discussed in Section 2.1.1 the main 

assumption underpinning this theory is that decision-makers maximise their net personal 

utility according the paradigm of ‘Homo Economicus’. However, the paradigm of ‘Homo 

Psychologicus’ has emerged from behavioural and cognitive science since the second 

part of the last century. Many behavioural studies have demonstrated that  humans do not 

always make strategic decisions that are well calculated, violating the basic axioms of the 

foundations of utility maximization (Walker 2001; Starcke & Brand 2012). These ‘cognitive 

anomalies’ are due to the fact that decision-makers have trouble handling information and 

forming perceptions consistently (Ben-Akiva et al. 1999). Many studies have shown that 

decision-makers may use a variety of ‘‘quick and dirty’’ heuristics, which could be simple 

rules of thumb or ‘‘cognitive shortcuts’’ through which they judge and take decisions 

(Tversky & Kahneman 1974; Kahneman & Tversky 1979; Klein 1999; Kuligowski 2013). 

Prospect Theory is an attempt developed to take into account some of the decision-

making features for decisions taken under conditions of risk and uncertainty1(Kahneman 

                                                 
1“Each decision can be placed on a continuum from ‘complete ignorance’ (not even the possible outcomes 
are known) through ‘uncertainty’ or ‘ambiguity’ (the outcomes are known but their probabilities are not 
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& Tversky 1979; Tversky & Kahneman 1992). To date, these two paradigms, Homo 

Economicus and  Homo Psychologicus, have converged into in an integrated approach 

called Dual Process Theory (Epstein et al. 1996; Starcke & Brand 2012). This theory 

assumes that humans make both strategic and intuitive decisions, identifying two 

systems: the rational–analytical system and the intuitive–experiential system. The former 

(linked to slow and serial but controlled, flexible, neutral, rule-governed and effortful 

information processing) is involved in rational decisions. The latter allows a fast, parallel, 

associative, and emotional type of processing supporting intuitive decisions. The 

interaction between these two systems and the final decision depend on the degree of 

uncertainty of the context of choice. For instance, in situations that present a low degree 

of uncertainty both decision systems may act together, whereas the intuitive–experiential 

system may play a more prominent role compared to the rational–analytical system for 

choices affected by a high degree of uncertainty (Starcke & Brand 2012). Moreover, the 

decision making process can change depending on the type of decision-making tasks. 

According to the literature, decision-making tasks are distinguished by their complexity 

and familiarity and can be placed on a continuum from ‘automatic’ (unconscious) tasks to 

‘planned’ (conscious) tasks (Ben-Akiva et al. 1999). An example of an automatic decision 

is the evacuees’ selection of speed and directions whereas possible planned decisions 

can be the decision to start evacuating or route choices. Psychologists emphasize that 

emotions may have an impact on both unconscious and conscious decisions (Ben-Akiva 

et al. 1999). Therefore, the assumptions underpinning Random Utility Theory need to be 

expanded in future works to include the paradigm of ‘Homo Psychologicus’ creating a 

new theory closer to the real decision-making behaviour. 

 

In conclusion, it is possible to argue that there is large gap between behavioural theory 

and discrete choice models, such as those deriving from Random Utility Theory (see 

Figure 2.8). According to Walker (2001), this gap is due to the ‘driving forces behind the 

two disciplines’. In fact, discrete choice modellers are focused on mapping inputs to the 

decision whereas behavioural researchers try to understand the nature of the decision-

making process. 

                                                                                                                                    
known) to ‘risk’ (the outcome probabilities are specified) and, finally, to ‘certainty’ (only a single outcome is 
known to result).” (Starcke & Brand 2012, p. 1230) 
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Fig. 2.8 – The gap between basic Discrete Choice Models (on the left) and the Complexity of Behaviours 

(on the right). Picture source: (Walker 2001) 

 

Figure 2.8 shows that, despite the complexity of the decision-making process, Random 

Utility Theory describe the full process as an ‘optimizing box’ linking  the observed inputs 

to the observed output and assuming that that the model implicitly captures the 

behavioural choice process (Walker 2001). 

 

The question which can be raised is: does Random Utility Theory provide an adequate 

representation of the phenomenon? Regardless of these evident simplifications, many 

instances have shown that it is quite robust when used to model discrete choices (Ben-

Akiva & Lerman 1985; McFadden 2001; Walker 2001; Hensher et al. 2005; Train 2009). 

Therefore, on one hand it is reasonable to use such as theory to model discrete choices. 

On the other hand, modellers should always be aware of the full assumptions 
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underpinning Random Utility Theory and their limitations since the gap between model 

and reality could make predictions diverge from reality in some circumstances  because 

of ‘cognitive anomalies’ (Ben-Akiva et al. 1999). 

 

 

2.6.2 Limitations of Mixed Logit Models 
 

Mixed Logit Models have been defined as the models for the new millennium 

since the mathematical formulation used for these models allows several limitations of the 

classic multinomial logit to be overcome, as discussed in Section 2.3 (Ortuzar & 

Willumsen 2011). One of the most important advantages provided by Mixed Logit Models 

is the possibility of capturing decision-makers’ heterogeneity using random parameters 

instead of only investigating heterogeneity systematically (this approach could provide 

inconsistent parameter estimations) (Chamberlain 1979; Vij et al. 2013). However, 

different criticisms have been presented (Vij et al. 2013). The first criticism is that the 

analyst has to make an a priori assumption about the mixture distribution for each 

randomly distributed coefficient (Hess & Rose 2006). Walker and Ben-Akiva (2011), 

argue that the correlation structure is a black box that makes the cause of the distribution 

not readily apparent. Finally, different studies have shown some of the deleterious effects 

of a wrongly specified distribution on parameter estimates and the attendant model 

interpretation (Hess et al. 2005; Fosgerau 2006). These criticisms highlight that modellers 

should be careful in the identification and interpretation of the random distributions 

affecting choices.  

 

An attempt to overcome the limitation of Mixed Logit Models is provided by Latent Class 

Choice Models. These models are nonparametric (or semi parametric) finite mixture 

discrete choice models allowing decision-makers to be segmented into homogenous 

classes (Ortuzar & Willumsen 2011; Greene 2011). A review of their development over 

the years as well as the fields in which they have been applied is available in Vij et al. 

(2013) and Vij and Walker (2014). However, also in this case there are several other 

modelling issues: (a) identification of the number of classes and (b) characterization of 

each class. This alternative modelling formulation is not used in this thesis since the 
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definition of a standard procedure to address these issues is still under investigation (Vij & 

Walker 2014).   

 

 

2.6.3 Limitations of the Behavioural Data 
 

Every dataset used to calibrate a model has limitations and those used in the 

three case studies introduced in Section 2.5.2 are not an exception.  

 

In Case Study 1 (decision to start investigating and evacuating), one of the main 

limitations is that choices are inferred from observing the behaviour of evacuees 

according to the video analysis criteria described by Nilsson and Johansson (2009). 

Therefore, measurement uncertainty affects these observed choices. Interviews or 

questionnaires to investigate the decision-making process reducing this uncertainty were 

not conducted by Bayer and Rejnö (1999) since the main purpose of the experiment was 

not the investigation of the choices investigated in the case study. Other limitations of the 

dataset are related to the number of cameras and their resolutions. Only one camera was 

used and therefore partial obstructions among evacuees generate pieces of missing data. 

Moreover, the low resolution of the video recordings made detailed analysis impossible 

(Nilsson & Johansson 2009). 

 

The main limitation of the data used in Case Study 2 (exit choice) is the low ecological 

validity of the online SP survey. In fact, participants were not facing a real emergency and 

were fully aware that they were not living an emergency. Therefore, it was impossible to 

instil real physiological stress in the respondents. Moreover, the awareness of 

participating in an experiment could bias the SPs. The respondents could conform their 

choice to what they think should be the ‘right’ answer for the researcher, instead of 

reporting their “natural” behaviour. Finally, the distribution of the survey using the Internet 

made it impossible to control the environment in which respondents filled out the survey 

(e.g. noisy vs. calm environments, distractions during the task). 
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Case Study 3 (local movement choices) used data in which the ecological validity is 

higher than that in Case Study 2 and lower than that in Case Study 1. The main limitation 

of this dataset is that participants navigated in the Virtual Environment using a joypad. 

Therefore, it is reasonable to think that the trajectories used were biased by this factor. 
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3. CASE STUDY 1: DECISION TO START INVESTIGATING AND 
EVACUATING 

 

 

3.1 Introduction 
 

Many studies have shown that the pre-evacuation time can be an important 

component of the RSET (Purser & Bensilum 1998; Kobes et al. 2010; McConnell et al. 

2010). Moreover, the analysis of real emergencies have shown that there can be a 

correlation between pre-evacuation time and the number of deaths or injuries (Kobes et 

al. 2010). To date, full-scale evacuation experiments and real emergencies have been 

used to quantify the pre-evacuation time for different building types such as residential, 

commercial, cinema, etc. (Nilsson & Johansson 2009; Fahy & Proulx 2001). Other studies 

have been made to investigate factors characterizing the social/physical environment (i.e. 

external factors) and factors characterizing the evacuee (i.e. internal factors) that could 

influence pre-evacuation behaviour (Sherman et al. 2011; Bryan 2002; Kuligowski & Mileti 

2009). However, pre-evacuation behaviours are generally less documented and 

quantified than movement behaviours (Kobes et al. 2010; Proulx 2002).  

 

To date, different theories and conceptual models have been proposed to explain the 

decision-making process characterizing the choices made during pre-evacuation time as 

discussed in Section 1.1.2 (Bryan 2002; Canter et al. 1980; Kuligowski 2013). Further 

quantitative analyses have been done to test some of these conceptual models by using 

statistical analysis (i.e. multi regression analysis) (Kuligowski & Mileti 2009; Sherman et 

al. 2011). Despite the above mentioned theories on evacuation behaviour, most of 

existing engineering evacuation models still adopt simplistic assumptions and 

simplifications about evacuees’ behaviour during pre-evacuation (Kuligowski 2013; Pan et 

al. 2006).  

 

At a conceptual level, three main modelling approaches have been proposed to represent 

the pre-evacuation time (Kuligowski 2013). The first approach relies on the deterministic 
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user assignment of a pre-defined time to individuals or groups or a pseudo-random 

number obtained from a distribution. The simulated evacuees (i.e. agents) remain 

stationary in their initial position until the assigned pre-evacuation time is over. The 

second approach involves the user assignment of sequences of pre-evacuation actions. 

The simulated evacuees move to different parts of the simulated building to perform their 

activities. Each action has a pre-defined specific duration for each evacuee. The main 

weakness of these first two approaches is that the behaviour is not really predicted by the 

models but it is a user input as illustrated in the conceptual scheme in Figure 1.3-a 

(Gwynne et al. 2015). This limitation has been overcome using the last approach, which is 

instead a predictive-based approach in which the behaviour is the actual result of the 

model as illustrated in Figure 1.3-b. In this last case, agents perform protective actions in 

accordance with different internal/external factors. Kuligowski (2013) states that the main 

limitation of this approach is the ‘homogeneity’ assumption which says “evacuees react to 

particular cues in similar ways” (i.e. lack of behavioural uncertainty). 

 

Even though the predictive-based approach is the only one which allows pre-evacuation 

behaviour to be simulated, most of the pre-evacuation models employs a priori random or 

deterministic pre-evacuation times defined by the user. However, different predictive-

based models have been proposed  (Reneke 2013; Pires 2005; Viswanathan & Lees 

2014; Liu & Lo 2011). These models are generally inspired by behavioural theories but 

they are not data-driven since they are not based on a regression of actual observed 

data. Then, their calibration appears a very complex issue that has not yet been 

addressed. 

 

The main goal of this chapter is, therefore, to improve the accuracy of predictions of 

evacuation models by presenting a novel approach to estimate predictive-based sub-

models for the simulation of pre-evacuation states (i.e. normal, investigating, and 

evacuating). This approach is supported by Random Utility Theory, which provides a well-

defined calibration formulation as discussed in Section 3.3. Moreover, the models 

estimated using this approach result closer to the conceptual theories describing pre-

evacuation behaviour (Canter et al. 1980; Kuligowski 2013) since their aim is to simulate 

the most important decision-making process affecting the pre-evacuation behaviour, 
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namely the one defining the passage between pre-evacuation states (i.e. normal, 

investigating and evacuating states). This passage is ruled by both the decision to start 

investigating and evacuating. 

 

The next section introduces the modelling assumptions uses to investigate the impact the 

decision to start investigating and evacuating on the evacuation behaviour. 

 

 

3.2 Modelling Assumptions 
 

This section introduces a modelling solution aimed at developing a pre-

evacuation decision-making model based on Random Utility Theory. The agent behaviour 

is defined by three behavioural states inspired by those proposed by Reneke (2013), 

namely, normal, investigating and evacuating. The passage from these states is identified 

by the decision to start investigating and evacuating by using Random Utility Theory. The 

probabilities concerning these choices are functions of factors characterizing the 

social/physical environment and factors characterizing the evacuee (i.e. internal and 

external factors) according to the formulation introduced in Section 2.3. 

 

The detailed list of assumption behind the proposed model can be summarised with the 

following list: 

 

1 - An evacuee can have three different behavioural states:  

a. Normal State (NS) 

b. Investigating State (IS) 

c. Evacuating State (ES) 

This assumption is based on the model proposed by Reneke (2013), in which those three 

behavioural states are recommended to help classify pre-evacuation behaviour. An 

evacuee is in his/her NS if s/he is performing his/her pre-emergency activities whereas 

s/he is in his/her IS if s/he has started investigating. Finally, the evacuee is in his/her ES 

when is performing all the activities aimed at evacuating the building. 
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2 – The allowed passages are those from NS to ES, from NS to IS and from IS to ES. 

These passages are irreversible. 

This assumption argues that once an evacuee has decided to start evacuating, s/he 

cannot take the decision to come back to NS or IS. At the same time, once an evacuee 

has decided to start investigating, s/he cannot come back to NS (see Fig. 3.1). 

 

Moreover, this assumption argues that the passage from NS is not a condition sine qua 

non to pass to ES (see Fig. 3.1). It is worth discussing that this is a modelling assumption 

and not a behavioural assumption. In fact, several behavioural studies in emergencies 

(Canter et al. 1980; Kuligowski 2013) argue that investigation is a required step before 

taking the decision to evacuate. However, the time spent by an evacuee to investigate 

could be very short (i.e. investigation can be carried out in a time shorter than the model 

time-step). In those occasions, they may be ignored during the modelling stage.  

 

 

Fig. 3.1 – Proposed behavioural states based on Reneke’s model (Reneke 2013); 

 

3 - Evacuees involved in evacuation behaves rationally and their passages from NS to 

ES, from NS to IS and from IS to ES are ruled by binary decision-making process. 

This assumption is supported by experimental and theoretical studies (Fahy et al. 2012; 

Canter et al. 1980) claiming that irrational behaviour, i.e., ‘panic’ behaviour, is extremely 

rare during emergencies as discussed in Section 2.1.3. The two decisions assumed to 

make evacuees change their state are the decision to investigate and to evacuate. The 

former makes evacuee pass from NS to IS whereas the latter from IS or NS to ES. 

 

4 - The decision-making process is affected by both Environmental (external) and 

Evacuee (internal) Factors. 

This assumption argues that an evacuee takes the decision to evacuate considering the 

perceived actual situation. However, these decisions can be influenced by the evacuee 
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characteristics (e.g. previous experience, physical and mental condition, alertness, etc.) 

since these internal factors can influence the way in which an evacuee perceives, 

interpret and make a decision (Kuligowski 2008). 

 

5 - The decision-making modelling approach proposed in this chapter follows Random 

Utility Theory. 

Assumption (3) shows that an evacuee has to deal with different behavioural binary 

choices. Random Utility Theory is used in this work to represent these choices. The 

general assumptions of this theory (described in Section 2.1.1) are not in conflict with 

those of the proposed pre-evacuation model.  

 

An application of the proposed methodology is made using the dataset discussed in the 

next section. 

 
 

3.3 Dataset 
 

A calibration of the proposed model is made by using the data collected during 

unannounced evacuation experiments in a cinema theatre in Sweden performed by Bayer 

and Rejnö (1999). The goal of these experiments was to test the influence of different 

alarm systems on the pre-evacuation time. Eighteen different experiments were 

performed with six different types of alarm systems, namely an alarm bell, an alarm tone 

signal, an alarm bell together with a flashing light, an alarm bell together with an 

information sign and two pre-recorded vocal messages. Evacuation experiments were 

performed in the same cinema theatre, but each participant only took part once.  

 

 

3.3.1 Cinema theatre 
 

The cinema theatre used in the experiments had one hundred and thirty-five 

seats (see Figure 3.2). 
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(a) 

 
(b) 

Fig. 3.2 – (a) Schematic representation of the cinema theatre (b) Geometrical definition of closeness to the 

decision-maker (black square). The grey squares are the evacuees visible to the decision-maker. The 

darkest grey squares are the evacuee considered close to the decision-maker. 

 

The cinema theatre consisted of nine rows with fifteen seats each. On each side of the 

nine rows, there were stairs from the front to the back of the cinema theatre. This meant 

that the participants could exit a row to both the left and right. Two doors linked the 

cinema theatre to the rest of the building (see Figure 3.2-a). A video camera was used to 

document the experiments and was placed in a dark box and mounted in the front right 

corner of the room. Further information regarding the procedure and recruitment of 

participants used during the experiments are provided by Bayer and Rejnö (1999). 

 

 

3.3.2 Existing data analysis 
 

Five of the experiments by Bayer and Rejnö (1999) have been analysed by 

Nilsson and Johansson (2009). The purpose of this second study was to investigate the 

impact of social influence on behaviour. Experiments with two types of alarms, namely an 

Alarm Bell (AB) and a Pre-Recorded female Message (PRM), were chosen. These alarms 

were chosen since they represent two different levels of ambiguity. The alarm bell is 
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considerably more ambiguous, since it does not provide any specific information about 

what has happened and how participants should behave. Only experiments in which the 

cinema theatre was at least half-full were selected. Information concerning the 

participants involved in these five experiments is provided in Table 3.1. 

 

Tab. 3.1 – Data concerning the 5 experiments analysed 

Exp. 
Type 
of 
alarm 

Total 
number of 

participants 

Participants 
who manifest 
behaviour (1)a 

Ageb Genderb 

Mean 
value 

Standard 
deviation 

Unknownc Female Male Unknown 

A1 AB 88 29 27.8 13 1 23 63 2 

A2 AB 100 51 28.1 10.3 5 37 60 3 

B1 PRM 113 12 26.8 6.5 1 62 50 1 

B2 PRM 135 12 25.4 6.3 2 60 74 1 

B3 PRM 135 15 27.9 8.8 3 59 74 2 

a Look at others beside or behind oneself. 
b These pieces of information were collected by an anonymous questionnaire after the experiment. 
c Number of participants who did not stated their age in the questionnaire. Only those participants who 

stated their age have been included in the calculations of the mean value and standard deviation. 

 

Nilsson and Johansson (2009) identify three distinct types of behaviour by using the 

analysis of the video recordings: (1) look at others beside or behind oneself, (2) start to 

prepare, and (3) rise. A full description regarding how these behaviours were observed 

during the video analysis is provided by Nilsson and Johansson (2009). All data extracted 

through the video analysis includes: 

 

 A record of the three different types of behaviours and who displayed them. 

 The times at which participants displayed type (2) and type (3) behaviour, i.e., 

each participant’s recognition and pre-movement time. 

 Whether participants were accompanied by others and where these people were 

seated. 

 

The temporal resolution of the observed behaviour (i.e. the time-step at which a 

behaviour was detected) is one second. 
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3.3.3 Existing data analysis 
 

This study use the data extracted through the video analysis made by Nilsson 

and Johansson (2009). Environmental factors are used to define the state of the decision-

maker. In fact, the behavioural types defined in this previous study are used to define the 

choice of investigating and evacuating. The behaviour type (1) is used to define the 

decision to start investigating assuming that a participant passes from NS to IS once s/he 

has manifested the behaviour type (1). Differently, the behaviour type (2) is used to define 

the passage from NS or IS to ES since a participant takes the decision to evacuate once 

s/he has started preparing to get ready to escape. 

 

Different internal and external factors can influence the decision-making process during 

the pre-evacuation time. The available data allows statistical testing of the influence of the 

factors listed in Table 3.2 on the decision to investigate and evacuate. All the variables 

introduced in Table 3.2 can be measured for each participant at each time-step since 

some of them are not constant during time. Table 3.2 makes a differentiation between 

decision-maker and evacuees. Decision-maker is the participant to which the variables 

are referred, while evacuees are the other participants involved in the same scenario of 

the decision-maker. 

 

Only the visible evacuees and those belonging to decision-maker’s personal group are 

assumed to influence him/her. The assumption adopted to define the visible evacuees is 

provided in Figure 3.2-b. These evacuees can be close to or far from the decision-maker 

in accordance with the assumption shown in Figure 3.2-a. Another social variable that can 

be investigated is the size of the decision-maker’s personal group. Physical 

environmental factors, such as the type of alarm system and the time elapse from the 

beginning of the alarm, are also included in the analysis. Table 3.2 also includes internal 

factors such as the position of the decision-maker (RW and ST) and his/her state (NS, IS 

and ES). Although general statistics concerning age and gender are provided in Table 

3.1, these factors are not included in Table 3.2 since those were collected after 

experiment by using an anonymous survey. 
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Tab. 3.2 – Analysed Variables 

Factor ID Description 

AL 
Dummy variable equal to 1 when the alarm system is the Alarm Bell and 0 when it is Pre-

Recorded Message 

TIME Time elapse after the alarm have started 

NF,N 
Total number of evacuees visible to the decision-maker and Far from him/her (see Figure 2) 

which are in Normal (N), Investigating (I) and Evacuating (E) states, respectively 
NF,I 

NF,E 

NC,N 
Total number of evacuees visible to the decision-maker and Close to him/her (see Figure 2) 

which are in Normal (N), Investigating (I) and Evacuating (E) states, respectively 
NC,I 

NC,E 

NG,N 
Number of evacuees belonging to decision-maker’s personal Group which are in Normal (N), 

Investigating (I) and Evacuating (E) states, respectively 
NG,I 

NG,E 

GR 
Dummy variable equal to 1 when the decision-maker has his/her person group  

(i.e. NG,N+ NG,I+ NG,E≠ 0 ) 

SG Size of the personal group 

RW Number of the row where the decision-maker is sitting 

ST Number of the seat where the decision-maker is sitting 

NS Dummy variable equal to 1 when the decision-maker is in Normal State 

IS Dummy variable equal to 1 when the decision-maker is in Investigating State  

ES Dummy variable equal to 1 when the decision-maker is in Evacuating State 

 

A new data set is created starting from data collected by Nilsson and Johansson (2009) to 

estimate the logit models able to predict the decision to evacuate and to seek more 

information. One record (i.e. observation) is included in the new data set for each 

decision-maker (i.e. participant) for each relevant event. The relevant events of a 

decision-maker are his/her decision to investigate and evacuate the change of state (e.g. 

from NS to IS, etc.) of at least one of other evacuees visible to decision-maker or 

belonging to his/her personal group. 

 

Table 3.3 shows an example of the features of the new data set. It represents a 

hypothetical decision-maker (ID=5) participating in a hypothetical experiment with alarm 

bell (AL=1) and located at 10th seat of the 3rd row (RW=3 and ST=10) and which is facing 

a hypothetical situation with 30 other visible evacuees far from him (NG,N+ NG,I+ NG,E = 
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30). Looking at the proposed recordings, it is possible to see that one visible evacuee 

starts investigating (NF,I =1) at five seconds from the beginning of the alarm (TIME=5s) 

whereas the decision-maker is still in normal state (NS=1). After eight second from the 

beginning of the alarm, one evacuee is investigating and three start evacuating whereas 

the decision-maker is still in NS. Table 3.3 shows that the decision-maker starts 

investigating after 13s whereas s/he take the decision to evacuate (i.e. he start preparing) 

after 15s.  

 

Tab. 3.3 – Features of the new data set (The data included in this piece of data set are derived from a 

hypothetical situation) 

Observations ID AL 
TIME 

(s) 

NF,N 

(pers) 

NF,I 

(pers) 

NF,E 

(pers) 
… RW ST NS IS ES 

1 5 1 5 29 1 0 … 3 10 1 0 0 

3 5 1 8 26 1 3 … 3 10 1 0 0 

4 5 1 10 25 2 3 … 3 10 1 0 0 

5 5 1 13 24 3 3 … 3 10 0 1 0 

6 5 1 14 20 3 7 … 3 10 0 1 0 

7 5 1 15 15 4 11 … 3 10 0 1 1 

 

The result of the calibration based on this data is proposed in the following section. 

 

 

3.4 Model Calibration 
 

Two models are estimated with the data set in order to predict the probability of 

investigating and choosing to evacuate. Different model specifications have been tested 

in order to find the ones which better fit the data for both choices. In this chapter, a model 

specification consists of the definition of the systematic part of Equation 2.1 (𝑉𝑗𝑞) 

including/testing all the independent variables that could affect the choices under 

investigation. The results and descriptions of selected calibrated models are provided in 

the following sections. Three measures of the goodness of fit are used: the likelihood for a 

model only including a constant (L0), the likelihood for the proposed model (LM), and the 

adjusted McFadden R squared (AdjR2). In particular, AdjR2 shows that the variables 
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included in the model give a significant improvement over the intercept model for both 

models (Table 3.4 and 3.6) (Hensher et al. 2005). 

 

 

3.4.1 Decision to investigate 
 

The proposed model for the decision to investigate is a classic logit model. The 

dependent variable used for this model is the dummy variable IS, which is equal to 1 

when the decision-maker decides to investigate (see Table 3.2). The variables included in 

Table 3.2 (except IS and ES) or combination of those have been tested as independent 

variables. However, only the variables statistically influencing the decision have been kept 

in the model. The deterministic part of the utility function better fitting the data is shown in 

Equation 3.1. Equation 3.1 has both lowercase and uppercase elements. The former are 

the estimated parameters whereas the latter are the actual variables of the model. 

 

𝑉𝑖𝑛𝑣𝑒𝑠𝑡 = 𝑐𝑜𝑛𝑠𝑡 + 𝑡𝑖𝑚𝑒 ∙ 𝑇𝐼𝑀𝐸 + 𝑛𝐶,𝐼 ∙ 𝑁𝐶,𝐼 + 

+𝑛𝐶,𝐸 ∙ 𝑁𝐶,𝐸 + 𝑛𝐺,𝑁 ∙ 𝑁𝐺,𝑁 + 𝑠𝑔 ∙ 𝑆𝐺 +  𝑟𝑤 ∙ 𝑅𝑊 + 

+𝑎𝑙 ∙ 𝐴𝐿 

 

 Eq. 3.1 

 

Different attempts have been made to test if any parameter is randomly distributed but all 

those attempts failed because no parameter seems to have this feature. This could be 

due to the low percentage of evacuees who took this decision (see Table 3.1). 

 

The estimated parameters are shown in Table 3.4. Since most of the variables included in 

the model have different units of measure, a direct comparison between the estimated 

coefficients would not make sense. However, a meaningful interpretation of the degree of 

influence of the independent variables on the probability is made by using the point 

elasticity method (Hensher et al. 2005; Train 2009). In fact, the elasticity (E(X)) of an 

independent variable X measures the change (in percentage) in the probability given a 1 

percent change in X. It is worth underlining that these measurements are sample-based 

since they are calculated averaging the elasticity of each observation included in the data 

set. Table 3.5 shows the sample elasticity of all the non-categorical variables calculated 
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by using the probability weight enumeration technique (see (Hensher et al. 2005) for 

further information). The dummy variables are not included in this table since these 

measurements cannot be meaningfully interpreted (Hensher et al. 2005). 

 

Tab. 3.4- Logit model for the decision to investigate 

Total number of Observations = 5240 

Lo = -3632.091 

LM = -1233.545 

AdjR2 = 0.66 

Parameter Coef. Std.Er. P-value 

const -2.131 0.289 0.000 

time 0.078 0.011 0.000 

nc,I 0.430 0.059 0.000 

nc,E 0.168 0.049 0.001 

nG,N -0.225 0.088 0.011 

sg -0.293 0.074 0.000 

rw -0.516 0.033 0.000 

al 3.288 0.185 0.000 

 

Tab 3.5 – Measurements of elasticity for the independent variables influencing the probability of 

investigating 

Variable TIME NC,I NC,E NG,N SG RW 

Elasticity 0.863 0.232 0.138 -0.103 -0.454 -1.612 

 

 

3.4.1 Decision to evacuate 
 

The proposed model for the decision to evacuate is a mixed binary logit model. 

The dependent variable used for this model is the dummy variable ES, which is equal 1 

when the decision-maker decides to evacuate and therefore s/he starts preparing to 

escape (see Table 3.2). The variables included in Table 3.2 (except ES) or combinations 

of those have been tested as independent variables. However, also in this case only the 

variables influencing the decision have been kept in the model. The proposed model is 

estimated by using panel data because it considers the correlation between the 
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observations of the same individuals (Ortuzar & Willumsen 2011). The probability 

provided by this modelling formulation cannot be calculated using a close formulation but 

can be simulated using several numerical solutions (Train 2009; Hensher et al. 2005). To 

address this issue, a number of 200 Halton draws are used to simulate random 

distributed parameters (refer to Hensher et al. (2005) and Train (Train 2009) for more 

information on the use of Halton draws). 

 

Equation 3.2 shows the utility function which better fits the data. Equation 3.2.has both 

lowercase and uppercase elements having the same meaning explained for Equation 3.1. 

 

𝑉𝑒𝑣𝑎𝑐 = 𝑐𝑜𝑛𝑠𝑡 + 𝑡𝑖𝑚𝑒 ∙ 𝑇𝐼𝑀𝐸 + 𝑛𝐹,𝑁−𝐼 ∙ (𝑁𝐹,𝑁 + 𝑁𝐹,𝐼) + 

+𝑛𝐶,𝑁−𝐼 ∙ (𝑁𝐶,𝑁 + 𝑁𝐶,𝐼) + 𝑛𝐺,𝑁−𝐼 ∙ (𝑁𝐺,𝑁 + 𝑁𝐺,𝐼) + 𝑛𝐺,𝐸 ∙ 𝑁𝐺,𝐸 

+𝑟𝑤 ∙ 𝑅𝑊 + 𝑖𝑠 ∙ 𝐼𝑆 

 Eq. 3.2 

 

where: 

time ~ N(μtime|σtime) 

nG,N-I ~ N(μnGNI|σnGNI) 

nG,E ~ N(μnGE|σnGE) 

rw ~ N(μrw|σrw) 

const, nF,N-I, nC,N-I, is ∈ℝ 

 

Table 3.6 shows the estimated values for the parameters whereas Table 3.7 shows 

measures of sample elasticity. 

 

 

3.4.3 Sensitivity Analysis 
 

Since the measurements of elasticity would not provide useful insights for the 

dummy variables, their influence on the probability of choosing to investigate and 

evacuate is studied through a sensitivity analysis.  The independent variables chosen in 

this analysis are both those with the highest values of sample elasticity (i.e. TIME and 

RW; see Table 5 and 7) and the two dummy variables (i.e. AB and IS; see Table 3.2, 3.4 
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and 3.6). The remaining variables of both models are kept constant and are set on the 

sample averages.  

 

Tab. 3.6 – Mixed Logit Model for the decision to evacuate 

Total number of Observations = 5240 

Lo = -3632.091 

LM = -1439.601 

AdjR2 = 0.60 

Parameter Coef. Std.Er. P-value 

Non-random parameters and means of random parameter 

const -4.137 0.579 0.000 

μtime* 0.122 0.021 0.000 

nF,N-I -0.034 0.007 0.000 

nC,N-I -0.335 0.060 0.000 

μnGN-I* -0.232 0.103 0.025 

μnGE* 0.633 0.121 0.000 

μrw* 0.257 0.064 0.000 

is 0.446 0.194 0.022 

Standard deviation of random parameter 

σtime 0.031 0.011 0.005 

σnGN-I 0.355 0.146 0.015 

σnGE 0.491 0.145 0.001 

σrw 0.164 0.041 0.000 

*means of the normal distributed parameters (see Equation 4.2) 

 

Tab. 3.7 – Measurements of elasticity for the independent variables influencing the probability of evacuating 

Variable TIME (NF,N+ NF,I) (NC,N+ NC,I) (NG,N+ NG,I) NG,E RW 

Elasticity 1.252 -0.419 -0.368 -0.047 0.192 0.776 

 

Figure 3.3 shows how the probability of choosing to investigate increases with the time for 

two scenarios characterized by two different alarm systems, namely alarm bell (Figure 

4.3-a) and Pre-Recorded Message (Figure 3.3-b). Differently, Figure 3.4 compares the 

variations of probability of choosing to evacuate for two different states of the decision-

maker, namely NS (Figure 3.4-a) and IS (Figure 3.4-b). 
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(a) 

 

(b) 

Fig.3.3–Variation of the probability of choosing to investigate with time and row (RW) for (a) Alarm Bell 

system and (b) Pre-Recorded Message system (the remaining variables are kept constant and set on the 

sample averages) 

 

 

 

 

 

(a) 

 

(b) 

Fig.3.4 – Variation of the probability of choosing to evacuate with time and row (RW) for decision-maker (a) 

in normal state and (b) in investigating state (the remaining variables are kept constant and set on the 

sample averages) 
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3.4.4 Model explanation 
 

Given the definition of the dependent variables ES and IS of both models (see 

Table 3.2), the parameters having positive sign increase the probability of beginning 

investigating or evacuating whereas those with negative sign reduce these probabilities. 

 

The first model predicting the decision to investigate (Table 3.4) shows that 

physical/social environmental and personal variables affect the probability of 

investigating. Among all the physical environmental variables, it is possible to see that the 

time (TIME) increases the probability of investigating as well as the presence of alarm bell 

system (AL). The latter result can be explained by the fact that an alarm bell is more 

ambiguous than a pre-recorded message (Nilsson & Johansson 2009). Therefore, a 

decision-maker is more likely to start looking for further information when the scenarios 

are characterized by ambiguity (Kuligowski 2011). This finding is also supported by 

previous studies testing the effectiveness of different alarm systems (Kuligowski & Mileti 

2009; Sime 1996; Proulx & Sime 1991). The only personal factor found influencing the 

choice is the position of the decision-maker. In fact, the probability of investigating 

decreases with the increase of the row where the decision-maker is sitting. In fact, 

decision-makers sitting in the first rows are more likely to investigate rather than those 

sitting in the last rows. This result could be associated with the definition of investigating 

state (i.e. the decision maker is assumed to pass in investigating state whenever s/he 

looks at others beside or behind oneself). In fact, as one would expect, people on the 

back are less prone to look at others beside or behind themselves since they can observe 

and get information from the people in front of them. On the other hand, this observed 

phenomenon could also be explained by the degree of ambiguity. In fact, decision-makers 

sitting in the last rows have a full vision of the cinema hall and other evacuees sitting in 

front to them therefore they could feel less need to seek further information around them. 

The proposed model also confirms the findings of previous studies underlying that social 

influence is an important factor affecting the choice to investigate (Nilsson & Johansson 

2009). In fact, a decision-maker is more likely to start investigating if evacuees close to 

him are already investigating (NC,I) or preparing to evacuate (NC,E). Moreover, s/he is less 
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likely to investigate if members of her/his personal group are still in normal state (NG,N). 

The model also shows that this probability decreases with the increase of the size of 

decision-maker’s personal group (SG). This last variable could be seen as an indicator of 

social affiliation. In fact, a decision-maker could get information discussing with the 

members of his/her group rather than looking around to get more information. These 

findings are also supported by literature since different studies have proved that pre-

evacuation behaviour can be affected by social factors as well as affiliation (Nilsson & 

Johansson 2009; Latane & Darley 1968; Sime 1996; Ronchi et al. 2014). 

 

A comparison between the strength of the aforementioned variables is made by using the 

elasticity analysis. Measurements of sample elasticity shown in Table 3.5 show that in the 

most elastic variables are the position of the decision-maker (E(RW)=-1.612) and the time 

(E(TIME)= 0.863). Moreover, the most elastic variable among the social ones is the size 

of decision-maker’s personal group (E(SG)=-0.454). The remaining social variables seem 

to have slightly affected the probability of investigating although these are statistically 

significant. These results are strongly affected by the sample under consideration. 

Therefore, it could be that social influences have a greater impact for different 

social/environmental settings. 

 

The second model (i.e. decision of evacuating, Table 3.6) shows that many factors 

influence the probability of choosing to evacuating. Among those, Table 3.6 and Equation 

3.2 show that some of them have normal random distributed parameters (i.e. TIME, NG,N+ 

NG,I, NG,E, and RW). This means that these factors are perceived differently by the 

decision-makings. This second model shows that the probability of evacuating grows with 

the time (TIME). There are also two personal factors influencing this probability, namely 

the position of the decision-maker (RW) and her/his personal state (IS). In fact, the 

probability of evacuating decreases with the increase of the number of row where the 

decision-maker is sitting. Therefore, decision-makers located on the back part of the hall 

are more likely to choose to evacuate rather than those in the frontal part of the hall. Also 

in this case, no previous studies have been found explaining this trend. Moreover, the 

model shows that decision-makers who looked around to get more information are more 

likely to choose to evacuate rather than those who do not show this behaviour. This could 
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be caused by the fact that decision-makers became more aware of the situation while 

investigating and having the need for evacuating (Canter et al. 1980). Finally, the 

proposed model shows that the decision to evacuate is also affected by social factors. In 

fact, a decision-maker is less likely to choose to evacuate if there are evacuees far from 

her/him (NF,N+ NF,I), close to her/him (NC,N+ NC,I) and belonging to his/her personal group 

(NG,N+ NG,I) in normal and investigating state. On the other hand, a decision-maker is 

more likely to choose to evacuate if members of her/his personal group have already 

taken this decision (NG,E).  

 

Measurements of elasticity are also made for this model. Table 3.7 shows sample 

elasticity for all the above-mentioned variables. Table 3.7 shows that the most elastic 

variable is the time (E(TIME)=1.252) followed by the position of the decision-maker (RW). 

Table 3.7 also shows that among the social influences, the influences of evacuees close 

to (NC,N+ NC,I) and far from the decision-maker (NF,N+ NF,I) are more elastic than those 

of evacuees belonging to decision-maker’s personal group (NG,N+ NG,I and NG,E). 

 

A simple sensitivity analysis of the model was made to study the effect of the dummy 

variables (i.e. AL and IS) on the probability of choosing to investigate and evacuate. The 

first pair of charts proposed in Figure 3.3 shows the probability of choosing to investigate 

for two scenario characterized by two different alarm systems, namely alarm bell (Figure 

3.3-a) and Pre-recorded message (Figure 3.4-b). Both charts show the probability 

increasing with the time and the number of row in accordance with the signs of 

parameters shown in Table 3.4 (i.e. time and rw). However, the two charts show that 

there is a strong difference between the two scenarios. In fact, the probability of 

investigating is definitely lower when the scenario is characterised by a pre-recorded 

message alarm. The second pair of charts compares the probability of choosing to 

evacuate for two different state of the decision-maker, namely normal state (Figure 3.4-a) 

and investigate state (Figure 3.4-b). In both charts, the probability grows with the time but 

decreases with the number of row in accordance with the sings parameters shown in 

Table 3.6 (i.e. μtime and μrw). A comparison between the two charts points out that the 

probability are higher when the decision-maker is already investigating. However, this 

difference is not as evident as that shown for the alarm system. 
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3.5 Model implementation 
 

The model can be implemented as a sub-model in new and existing agent-based 

evacuation models regardless of their assumptions (Kuligowski et al. 2010). The 

implementation of the proposed sub-model can be done following two different 

approaches, namely event-based or time-based. The former approach assumes that a 

decision is taken by every decision-maker for each event changing the state of the 

system whereas the latter assumes that a decision is taken by every decision-maker at 

each time-step. Regardless of the approach in use, an implementation of the proposed 

model should follow the pseudo code proposed in Appendix 1. This code needs to be run 

for each iteration that could be defined by either a time-step or an event. This code points 

out that the decision to investigate precedes that to evacuate. Therefore, there could be 

decision-makers who can start investigating and evacuating during the same iteration. In 

this case, the output of the model provides a direct passage from the normal state to the 

evacuating one passing directly from NS to ES (see Assumption 2). Finally, it is worth 

highlighting that the actual state of the decision maker affects the decision to evacuate 

since a decision-maker already investigating has higher probability to start evacuating 

(see Table 3.6). Therefore, this phenomenon is taken into account in the pseudo code 

through the probability of evacuating (pEvac), which is affected by the decision-maker’s 

status. 

 

As an explanatory example, the implementation of the model is presented for a single 

arbitrary decision-maker. This agent represents the real decision-maker sitting at the ninth 

seat of the fifth row of the experiment A2 (see Table 3.1). The behaviour of the other 

evacuees influencing him/her is not simulated but set according to the real behaviour 

observed during the experiment. In other words, the behaviour of the other agents is set 

to match the actual behaviour during the experiment. The implementation was performed 

using the software package called breve (Klein 2003) through both a time-step approach 

and event based approach.  

 

Figure 3.5 shows some snapshots taken from one simulation. The agents are 

represented as spheres. The simulated decision-maker is the blue sphere (Figure 3.5-8s) 
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and it changes its colour during the simulation. The agent becomes yellow when it starts 

investigating (Figure 3.5-20s) and red when it decides to evacuate (Figure 3.5-22s). All 

the other agents in the scenario are black if they do not influence the decision-maker or 

grey if they do it (Figure 3.5-8s). The agents influencing the decisions change their colour 

becoming light grey if they are investigating and white if they choose to evacuate. 

 

 

(8s) 

 

(16s) 

 

(20s) 

 

(22s) 

Fig. 3.5 – Snapshots of a simulation of the proposed model for a single decision-maker (i.e. blue-yellow-red 

sphere) at different seconds (8s, 16s, 20s, and 22s). 

 

Given the probabilistic approach in use, several simulations have been run for four 

different time-step intervals to study how they affect the results of the proposed model. 

The intervals chosen in the case of the time-step approach are 1s, 2s, 3s, and 4s. The 
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intervals were chosen considering the temporal resolution of the experimental data (i.e. 

1s) and the average time-step interval of the relevant events found in the analysis of the 

data set conducted in this work (i.e. 2.5s). For the event-based approach, the state of the 

decision maker is update whenever other evacuees change their states. 

 

A simple criterion is used to study the convergence of the results and define the number 

of runs.  The method investigates the average recognition times produced by consecutive 

runs (Ronchi & Nilsson 2013b). The runs are stopped when the relative error (i.e. the 

difference between two consecutive averages divided by the last average) is lower than 

1% for at least ten consecutive runs. In addition, a minimum number of runs is conducted 

(i.e. forty runs). For all time-step intervals, the resulting number of runs is fifty. 

 

The non-cumulative and cumulative frequencies of the simulated recognition times for the 

four time steps and for the event-based approach are shown in Figure 6 and 7. The 

averages of the recognition times for the four time-steps are 20.5s, 23.9s, 25.7s and 

28.3s respectively. Figure 3.6 and 3.7 show that the simulated recognition times grow 

with the time-step interval. This result highlights that future studies are required to 

investigate the optimal time-step maximizing the predictability of the model. 

 

 

Fig. 3.6 - Non-cumulative frequencies of the simulated recognition times for time-based (time-steps equal to 

1s, 2s, 3s, and 4s) and event-based approaches. 
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Figure 3.7 also shows that the event-based curve is the steepest one. This means that 

simulated data for this approach has the lowest dispersion. This is also proved by the 

Standard Deviations (SD) of the simulated recognition times (SD1s=3.81s, SD2s=3.56s, 

SD3s=4.16s, SD4s=3.65, and SDevent-based= 2.67). This result could be related to the 

approach used to build the new dataset, which is based on relevant events (see Section 

3.3). However, also in this case, further studies are necessary to verify this explanation. 

 

 

Fig. 3.7– Cumulative frequencies of the simulated recognition times for time-based (time-steps equal to 1s, 

2s, 3s, and 4s) and event-based approaches. 

 

 

3.6 Discussion 
 

This chapter introduces a new predictive-based pre-evacuation model. The 

proposed model allows the pre-evacuation behaviour to be simulated by modelling two 

key decisions, namely the decision to investigate and the decision to evacuate. These two 

binary decisions are used to predict the state (i.e. normal, investigating, and evacuating) 

of each decision-maker in accordance with the external and internal factors. The 

proposed sub-model does not predict all activities that can take place during the 

investigating and evacuating states since this level of detail is out of the scope of this 
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work. Therefore, further studies are necessary to model the decision-making process 

behind the planning of these activities. 

 

This work is an attempt to improve the pre-evacuation modelling simulating the agents’ 

pre-evacuations states using Random Utility Theory. This has been performed using data 

from evacuation drills carried out in a cinema theatre. Therefore, it is worth highlighting 

that future research is needed in order to verify the generalizability of the results for other 

types of scenarios. 

 

The main difference between the model proposed in this work and existing predictive-

based pre-evacuation models is that it is data-driven. In fact, this model can be easily 

calibrated with data from different environmental setting and evacuees by using discrete 

choice methods (Ortuzar & Willumsen 2011; Train 2009; Hensher et al. 2005). This allows 

researchers to verify the influence of internal and external factors on the decision to 

investigate and to evacuate by using real data. Therefore, the model can also be used to 

test conceptual/behavioural theories describing pre-evacuation behaviour as well as 

multiple regression analysis already used in other works (Kuligowski & Mileti 2009; 

Sherman et al. 2011). Finally, although the behavioural states based on risk perception 

proposed by Reneke (2013) are used in this model, its main advantage is that the 

passage between states is in this case based on two decisions (see Assumption 3) rather 

than the achievement of a pre-defined threshold of risk perception.  

 

A key strength of this work is that a user is not asked to define a random distribution 

defined a priori for the pre-evacuation time since the decision to evacuate and the time 

necessary for taking this decision is estimated in accordance with the evolution of the 

simulated environment (i.e. predictive-based approach). This engineering model is 

therefore closer to the behavioural theories (Canter et al. 1980; Kuligowski 2013) 

describing the pre-evacuation behaviour since it focuses on the decision-making process. 

However, this model does not allow an evacuee in an investigating or evacuating state to 

return to the previous state (see Assumption 2). This limitation derives from the general 

time-line framework (widely used in evacuation modelling) for which the model is 

proposed (British Standard Institute 2004; International Organization for Standardization 
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1999; Proulx 2002; Purser & Bensilum 1998). In fact, the time-line model does not allow 

modellers to simulate evacuees that at some point of their evacuation take the decision to 

stop responding to the emergencies returning to their pre-alarm activities. On one hand, 

this assumption simplifies the modelling issue since assuming irreversible choices implies 

the need to study only two choices, the choice to start investigating and evacuating. On 

the other hand this is just a modelling assumption that could not be true for some actual 

emergencies since limited ambiguous information may lead evacuees to make reversible 

choices. The data used in this work does not allow the investigation of this issue to be 

investigated. However, additional data concerning human behaviour during emergencies 

are required to investigate this issue in future works. 

 

A second strength of this model is that it allows both sources of behavioural uncertainty of 

decision-makers to be taken into account by using Random Utility Theory (see Section 

2.3). Therefore, the proposed model overcomes the ‘homogeneity’ limitation discussed by 

Kuligowski (2013). 

 

Since the proposed model is both stochastic and predictive-based, it requires more 

computational power for its implementation than existing non predictive-based models. In 

fact, a computational tool implementing the model needs to predict the probabilities of 

choosing to investigate and evacuate and a pseudo-random number in order to define the 

final choice. These calculations are made at each time-step and for each agent.  

 

In this work an example of calibration is provided using experimental data from a cinema 

theatre evacuation (Nilsson & Johansson 2009). However, this approach is intended for 

general use since different models can be calibrated for different building types, evacuee 

characteristics, types of emergencies, etc. The main limitation concerning the proposed 

calibration is the way the observed decisions are defined. In fact, the decisions are 

defined by using the behavioural type defined by Nilsson and Johansson (2009) However, 

the passage from one state to another could be defined observing other behaviours such 

as eye movement. However, the poor resolution of the video recordings made this kind of 

detailed analysis impossible in the study by Nilsson and Johansson (2009). Another 

measurement issue could be behind the assumption made concerning the visible 
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evacuees (see Figure 3.2). It could be that participants involved in the experiment had a 

different perception of the environment considering different combinations of visible 

evacuees. However, Random Utility Theory allows these measurement errors to be 

included in the random parameters of the model (Ortuzar & Willumsen 2011). 

 

The proposed model can be implemented using different approaches (i.e. time-based and 

event-based). The first approach requires simulation that goes in time from one event to 

the next one, making the most efficient use of computer resources. This approach has 

been used to create the data set of the model (see the definition of relevant event in 

Section 3.3) implicitly assuming that decision-makers take a decision every time the 

environment changes its state. In contrast, the time-based approach is easier to 

implement at the cost of high computational burden (B. Zhang et al. 2011). However, it 

raises a new issue concerning the definition of a suitable time-step. In fact, too large time-

step may lead to an unsuitable approximated simulation of the decisions, while too small 

time-step can result in unnecessary updates and higher computational cost (B. Zhang et 

al. 2011). In this work, an attempt of implementation is proposed for a single decision-

maker using both the time-based and event-based approaches. This simple example 

highlights that the time-step interval could affect model results, thus sensitivity analysis 

studies are necessary to address this issue. Future studies are necessary to investigate 

the sensitivity of the model to the type of implementation in use (i.e. time-based or event-

based) and the associated assumptions (i.e. definition of the time-step intervals). 

Moreover, it is worth mentioning that the new dataset has been built using an event-

based approach. Therefore, the study of the influence of another method to build the 

dataset (the time-based approach) should also be carried out in the future. Finally the 

results of the calibrated models are affected by the layout of the scenario (i.e. participants 

sit on aligned seats and look ahead). Therefore, the implementation of the proposed 

calibrated model is recommended only for buildings with a similar layout since the same 

factors included in the model may affect differently the choices in other types of buildings. 

Hence, future studies are necessary to investigate the generalizability of the results for 

any cinema theatre since other factors may affect the pre-evacuation behaviour such as 

sample size, population characteristics, people density, etc. 
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4. CASE STUDY 2: EXIT CHOICE 
 

 

4.1 Introduction 
 

Decision making during the movement toward a safe place implies different 

choices. One of the most important concerns the escape route since this choice affect 

evacuees’ movement phase.  The literature argues that escape route can determine the 

effectiveness of the evacuation process in a crucial way (Ronchi 2012; Nilsson 2009; 

Lovreglio 2014; Fridolf, Nilsson, et al. 2013; Lovreglio, Borri, et al. 2014). The decision 

concerning the route to a safe place entails global and local choice (Wagoum et al. 2011; 

Gwynne et al. 2001). Evacuees try to select the final goal(s) of their evacuation journey 

through the global exit choice and then they try to achieve the selected goal making local 

exit choices (Reynolds 1999; Ronchi & Nilsson 2016). Even though evacuees may be 

familiar with the building, it is not always realistic to assume that they have a complete 

knowledge of the whole escape route. There could be situations in which the global 

evacuation route may be the consequence of local choices since different exits from the 

same environment may lead to very different global escape routes (Wagoum et al. 2011; 

Gwynne et al. 2001). 

 

Three main approaches of representing exit choice are considered in existing agent-

based evacuation models: (a) agents (i.e. simulated evacuees) head towards exits 

predefined by the modeller; (b) agents choose the closest exit; (c) agents choose the exit 

considering environmental, social and personal factors (Kuligowski et al. 2010; Schneider 

& Könnecke 2010; Wagoum 2012; Gwynne et al. 2000). 

 

The first approach is clearly limited because it does not consider any evolution of the 

evacuating scenarios and the behaviour is an input of the model (see Figure 1.3-a). In the 

second one (distance-based model), the choice is context-dependent but static and 

based only on the building structure. It does not allow for dynamic adjustments to avoid 

congestion (Schneider & Könnecke 2010). The third category of models entails that each 

agent evaluates the features of the simulated environment and takes decisions on the 

basis of the perceived information. In these models, the chosen exit can change during 

the evacuation process if the evacuation conditions change and a range of variables can 
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be considered (e.g. presence of smoke, visibility, familiarity with an exit). The simplest 

and most common model of the third category is the quickest path  model, in which the 

agents choose the exit with the least evacuation time. Therefore, exit choice is an output 

of the model rather than an input (see Figure 1.3-b). 

 

The modelling approaches to represent exit choice can be also classified into 

deterministic and stochastic (Lovreglio, Borri, et al. 2014). Deterministic approaches have 

been derived from different decision theories, such as the game theory (Lo et al. 2006; 

Ehtamo et al. 2010; Mesmer & Bloebaum 2014) or the utility maximization theory (Ehtamo 

et al. 2009; Wagoum 2012). Stochastic models differ from deterministic models (that are 

easier to implement but can represent only average behaviours) and they take 

behavioural uncertainty into account. Several stochastic approaches have been used for 

exit choice. For instance, Zhang et al. (2013) introduced an exit choice model in which the 

‘base probability’ of using an exit is defined by the modeller. However, these pre-defined 

probabilities may change depending on the previous use of the exit and the fire condition 

of the next compartment connected to the exits. This approach required prior knowledge 

of usage probabilities, which can be difficult to obtain. This issue is overcome by random 

utility models since they do not require any pre-defined probability as illustrated in Section 

2.3. 

 

This work presents a case study of local exit choice during the evacuation from an 

enclosed environment with two exits investigating the impact of both environmental and 

social variables on exit choice, including presence of other evacuees, fire conditions, 

emergency lighting and distance from the exit. The study is based on an online stated 

preference survey using non-immersive VR hypothetical scenarios using videos. The 

main contribution of this work is to provide new experimental data, which allows for a 

preliminary understanding of local exit choice in emergencies when the context of choices 

is characterized by many environmental and social factors. Then, the aim of this study is 

to verify the importance of the behavioural uncertainty in local exit choice. However, 

because of the low ecological validity of this case study, it is necessary to test the validity 

of the behavioural findings of this case study using more advanced technique (i.e. 

immersive VR) in future study. 
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4.2 Modelling Assumptions 
 

This section introduces a modelling solution aimed at developing a local exit 

choice model based on Random Utility Theory. Assuming that a q evacuee has to choose 

an exit between n possible exits, it is possible to define a utility function for each i exit 

rewriting Equation 2.1 as: 

 

𝑈𝑞
𝑖 𝑒𝑥𝑖𝑡 = 𝑉𝑞

𝑖 𝑒𝑥𝑖𝑡 + 𝜀 

𝑉𝑞
𝑖 𝑒𝑥𝑖𝑡 =∑𝑝𝑗

𝑖𝐹𝑗,𝑞
𝑖

𝑗

 
 Eq. 4.1 

 

where 𝐹𝑗,𝑞
𝑖  are the external factor defining the systematic utility of the i exit for q evacuees 

and 𝑝𝑗
𝑖  are the parameters defining the weight of these factors in the selection of an exit. 

Using the assumptions introduced in Section 2.3 for the random part (𝜀), it possible to the 

probability that to select an exit by using the multinomial formulation: 

 

𝑃𝑞
𝑖 𝑒𝑥𝑖𝑡 = 

𝑒∑ 𝑝𝑗
𝑖𝐹𝑗,𝑞
𝑖

𝑗

∑ 𝑒
∑ 𝑝𝑗

𝑘𝐹𝑗,𝑞
𝑘

𝑗
𝑘

  Eq. 4.2 

 

Assuming that the 𝑝𝑗
𝑖  are randomly distributed, it is also possible to have the mixed logit 

formulation and its simulation as described in Section 2.3. The next section introduces the 

dataset used to calibrate an exit choice model to select an exit taking into account several 

social/physical factors. 

 

 

4.3 Dataset 
 

The exit choice model has been calibrated using data collected through an online 

SP survey. The procedure adopted to develop the survey includes several steps as 

illustrated in Figure 4.1. 



 98 

 

Fig. 4.1 – Methodology used to develop the survey and to calibrate the exit choice model 

 

In the first step, the variables which may influence exit choice were identified through a 

literature review and analysing a set of interviews made during a previous study on exit 

choice (Lovreglio, Fonzone, et al. 2014). Then an on-line pilot survey presenting 12 

preliminary hypothetical scenarios (using videos representing the context of choice) and 

involving 88 participants was carried out both to improve the representation of the 

scenarios and to collect information for the design of the final survey. Face-to-face semi-

structured interviews with some of the respondents provided insights into the perception 

of the contexts of choice and the involved variables (i.e. the interviewees were asked 

about the factors affecting their choice to verify if they could perceive all of them). In the 

second step, the information collected through the pilot survey was used to define the 

levels of the variables characterising the scenarios in the final survey, using the Efficient 

Design technique explained below. Moreover, the results of interviews were used to 

improve the videos so that respondents could have an accurate perception of the 

contexts of choice. In the last stage, data collection was performed through an on-line 
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survey. The videos representing the choice scenarios could be easily shown to 

respondents using the Internet. 

 

The scenarios used in SP surveys are defined by the levels assumed by the relevant 

factors. When the number of variables is large, the number of the scenarios generated by 

the combinations of all levels of all variables becomes easily intractable. The Efficient 

Design (ED) technique was used to select the scenarios to be included in our survey 

(Rose et al. 2008; Greene 2011; Sándor & Wedel 2001; Institute of Transport and 

Logistics Studies 2007). The method is based on the minimization of the so called D-

error, that is the determinant of the asymptotic variance-covariance matrix (i.e. the 

negative inverse of Hessian matrix of the log-likelihood function) to the power of 1/K, 

where K is number of parameters to estimate. Therefore, D-error is related to the  p-

values of the parameters to estimate since p-values are calculated using the variance 

matrix (i.e. the diagonal elements of variance-covariance matrix) (Greene 2011). To 

implement ED, approximated values of the model parameters (“prior” values) are needed 

before running the survey. Prior values can be found in literature or, if not available as in 

our case, obtained from a pilot study. The pilot survey can be designed by means of ED, 

using educated guesses on the sign and the value of each parameter to estimate. 

 

 

4.3.1 Pilot and Final Scenarios 
 

The context of choice adopted in this study was characterized by the choice 

between two exits, one on the left-hand side and one on the right-hand side of the 

decision maker. The exits were set in an enclosed environment similar to a metro station 

with rectangular plant (size: 23m x 18m) as shown in Figure 4.2. The scenarios were 

proposed using videos to make the context of choice more realistic. Moreover, videos 

provided respondents with information deriving from the dynamic evolution of the 

evacuations: for instance, the capacity of an exit can be evaluated from the number of 

evacuees that flow through it in a certain time. The videos were generated using Unity 3D 

(Personal Edition). The geometry of the metro station was directly built in Unity 3D 

whereas evacuees’ models were downloaded from the web and their original file formats 
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was converted using Blender. To improve the realism, a fire alarm (recorded during a 

school fire drill) and crowd sound were added (source: www.soundbible.com). During the 

experiment, decision-makers were supposed to be inside the environment and that videos 

were taken from their point of view. 

 

 

Fig. 4.2 - Frame from one of the videos 

 

Exit choice is influenced by environmental (concerning the physical features of the choice 

context), social (related to the presence of other evacuees) and personal factors 

(Lovreglio, Borri, et al. 2014). In this study, only social and environmental factors were 

included in the model specification, whereas the study of the influence of internal factors 

on exit choice (except gender) is left to future work. The variables considered in the 

survey were: 

 

 Number of evacuees Close to the Exits (NCE); 

 FLow of evacuees through the exits (FL); 

 Number of evacuees Close to the Decision-Maker heading towards one of the 

exits (NCDM); 

 SMoke near the exits (SM); 

 Evacuation Lights above the exits (EL); 

 DISTance of the decision-maker from the exits (DIST); 
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Fire conditions can affect exit choice in two ways: the presence of the smoke near an exit 

can induce decision-makers to avoid that exit; the presence of smoke near an evacuees 

can affect their visibility distance. In the survey videos, the presence of smoke does not 

affect the visibility distance (the respondents are able to see the exit and the simulated 

evacuees in every video without being affect by the smoke). Therefore, only the influence 

of the presence of smoke near the exits, represented by a dummy variable was 

investigated (SM). 

 

The evacuation light used in this case study have the evacuation sign illustrated in Figure 

4.3 with a constant light source (i.e. LED). In this study, only the impact of the presence of 

the evacuation light (EL) was investigate whereas the impact of different luminance level 

and  the visibility impact need to be investigated in future studies. 

 

 

Fig. 4.3 – Evacuation sign (HM Government 2007) 

 

In the pilot survey, respondents were asked to identify the exit they would choose in 12 

hypothetical scenarios. The settings of the pilot survey, such as level for each variable 

(i.e. the set of values that variables can assume), selected hypothetical scenarios, etc., 

are reported in the Appendix 2 of this thesis. In accordance with the Efficient Design, 

positive values were assumed only for FL and EL and negative ones for NCE, NCDM, SM 

and DIST. The pilot study involved 88 respondents corresponding to 1056 (88 x 12) 

observations. The starting values of the parameters for the design of the final survey with 

ED were estimated by calibrating a pilot logit model (Table 4.1). 10 of the 88 respondents 

participated in a face-to-face semi-structured interview. Most of them stated that they 

could not perceive any difference between the flows though the two exits, which were 

actually different in some scenarios. This is confirmed by the pilot model, where the 

parameter associated with FL is not significantly different from zero. To improve the 

perception of this variable, two very different levels were chosen for the final survey (see 

Table 4.2). While in the pilot survey the different evacuees’ flows depends only on 
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evacuee speeds, in the final survey different flows were determined both by using 

different evacuee speeds and exit widths. Even though the parameter associated with 

DIST was not significantly different from zero (see Table 4.1), almost all interviewees 

stated to take into account the distance from the exits during the choice. Therefore, it is 

kept in the final survey. 

 

The scenarios of the final survey are defined by different combinations of the variables 

and levels shown in Table 4.2. The subscript i represents the exit:  L stands for the exit on 

the left, R for that on the right-hand. NCEi varies during the videos because evacuees 

evacuate through the exits; the values shown in the table are those visible at beginning of 

each video. The two dummy variables NEAR_E and DIR define respectively the position 

of the decision-maker and the direction of evacuees close to the decision-maker. 

NEAR_E=0 if the decision-maker is closer to the right-hand exit, 1 otherwise. Similarly 

DIR=0 if the evacuees near the decision-maker move towards the right-hand exit, 1 

otherwise (Figure 4.4). 

 

Tab.4.1 – Pilot logit model 

Parameter Coef. Std.Er. P-value 

NCE -0.108 0.012 0.000 

FL 0.214 0.209 0.307 

NCDM -0.049 0.021 0.020 

SM -0.985 0.123 0.000 

EL 0.175 0.101 0.082 

DIST -0.011 0.030 0.718 

 

Given the variable levels in Table 4.2, the number of the possible scenarios (full factorial 

design) is 413328=27648. 12 scenarios illustrated in Table 4.3 are selected using the 

Efficient Design. The 12 scenarios were divided into two blocks of 6 and each respondent 

was presented with one of the two blocks using the techniques explained in (Institute of 

Transport and Logistics Studies 2007). This allows the number of scenarios to be reduced 

for each respondent and so to prevent respondents’ fatigue, a problem pointed out by 

some of the interviewees during the pilot survey where participants were asked to state 
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their decision in 12 cases. Moreover, the scenarios were presented randomly to avoid 

that the collected data may be biased by the order of the scenarios. 

 

Tab. 4.2 - Levels for each variable 

Variable Description Levels 

NCEi* (pers) Number of evacuees Close to the Exits 24   30   40 

FLi (pers/s) FLow of evacuees through the exits 0.6   1.2 

NCDM (pers) Number of evacuees Close to the Decision-Maker  0   5   10 

SMi SMoke near the exits 0   1 

ELi Evacuation Lights above the exits 0   1 

DIST (m) DISTance of the decision-maker from the exits 10   12   14   16 

NEAR_E 
Dummy variable equal to 0 if  the decision-maker is closer to the right-

hand exit, 1 otherwise 
0   1 

DIR 
Dummy variable equal to 0 if the agents near the decision-maker move 

towards the right-hand exit, 1 otherwise 
0   1 

*the values refer to the beginning of the videos 

 

 

Fig. 4.4 – Context of choice 



 104 

Table 4.3 – Final scenarios 

Scenario NCEL NCER FLL FLR SML SMR ELL ELR NCDM DIR DIST NEAR_E Block 

1 24 30 1.2 0.6 0 1 1 1 10 1 14 0 1 

2 40 40 0.6 0.6 1 0 1 0 5 0 16 1 1 

3 30 30 0.6 1.2 0 0 0 1 10 0 10 0 1 

4 24 40 1.2 0.6 1 0 0 1 0 1 10 1 1 

5 40 24 1.2 1.2 0 1 0 0 0 1 12 1 1 

6 30 40 0.6 1.2 1 1 1 0 0 0 16 0 1 

7 40 40 0.6 0.6 0 0 0 0 5 1 10 0 2 

8 40 24 0.6 0.6 0 1 1 1 5 0 12 1 2 

9 24 30 0.6 1.2 1 1 0 1 10 1 16 1 2 

10 30 30 1.2 1.2 1 0 1 1 0 1 14 0 2 

11 30 24 1.2 0.6 1 1 0 0 10 0 12 0 2 

12 24 24 1.2 1.2 0 0 1 0 5 0 14 1 2 

 

 

4.3.1 Questionnaire Structure 
 

The questionnaire, in English and Italian, was disseminated through internet over 

a period of two months. The survey was advertised by mail lists and social networks 

(LinkedIn, Twitter, and Facebook). This advertising strategy was used to collect as much 

data as possible from respondents coming from different parts of the world. The goal was 

to collect data from more than 450 respondents, which was the lower bound for the 

sample size suggested by the Efficient Design technique for this case study [53].  

 

The survey included three sections. The first contained an introduction and demographic 

questions. In the second the videos representing the contexts of choice were shown. The 

respondents were instructed to make a choice at the end of the playback. It explicitly 

stated that “there is no right and wrong choice and we are only interested in 

understanding what you would do in the situation you are faced with in the video”. This 

was essential because the aim of the survey was not to collect data about the “most 

rational/optimal” behaviour but the “natural” response to the situation. At the end of each 

video, respondents were directed to a new web page to choose between the left and 
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right-hand exits. This page also included a countdown timer that gave the respondents 5s 

to answer the question. The countdown timer was used to prevent that excessively long 

reflection may lead to choices different from those in emergencies. Actually, respondents 

were also allowed to state their choice after the time runs out to reduce non-response, but 

they were not made aware of this to maintain the level of alertness. Finally, in the third 

section, at the end of the videos, the respondents were asked questions about the level of 

realism of the proposed scenarios and the level of anxiety during the experiment. 

 

 

4.3.1 Respondents 
 

The sample is made up of 1503 respondents, corresponding to 9018 (1503 

participants x 6 scenarios) observations. 28.3% of participants are female. The mean age 

is 28.2, with standard deviations 11.4; 71% of the respondents are under 30 years old 

(Figure 4.5). The majority of respondents are from Europe (i.e. nationality), mainly from 

Italy (22%) and the UK (11%) (Figure 4.6). 

 

 

Fig. 4.5 –Age distribution of respondents 

 

The sample demographics are explained by the dissemination channels. In fact, the age 

distribution reflects the age distribution of social network users (Thelwall 2008; Acquisti & 

Gross 2006). However, the sample is large enough to take into account differences 

between male and female respondents. 
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Fig. 4.6 – Geographical distribution of respondents 

 

 

4.4 Model Calibration 
 

4.4.1 Model Specification 
 

A Mixed Logit Model is estimated using the data from the survey described in 

Section 4.3. The deterministic part of the utility function of the exits (𝑉𝐿 and 𝑉𝑅; where L 

stands for the exit on the left, R for that on the right-hand) includes all the variables 

described in Section 4.3.1 (see Equation 4.3). A constant is added to the utility function of 

the right-hand exit to check whether respondents are biased towards one of the two exits. 

Equation 4.3 has both lowercase and uppercase elements. The former are the estimated 

parameters whereas the latter are the actual variables of the model. 

 

𝑉𝐿 = 𝑛𝑐𝑒 ∙ 𝑁𝐶𝐸𝐿 + 𝑓𝑙 ∙ 𝐹𝐿𝐿 + 𝑛𝑐𝑑𝑚 ∙ 𝑁𝐶𝐷𝑀𝐿 + 

𝑠𝑚 ∙ 𝑆𝑀𝐿 + 𝑑𝑖𝑠𝑡 ∙ 𝐷𝐼𝑆𝑇𝐿 + 𝑒𝑙 ∙ 𝐸𝐿𝐿  

𝑉𝑅 = 𝑛𝑐𝑒 ∙ 𝑁𝐶𝐸𝑅 + 𝑓𝑙 ∙ 𝐹𝐿𝑅 + 𝑛𝑐𝑑𝑚 ∙ 𝑁𝐶𝐷𝑀𝑅 + 

𝑠𝑚 ∙ 𝑆𝑀𝑅 + 𝑑𝑖𝑠𝑡 ∙ 𝐷𝐼𝑆𝑇𝑅 + 𝑒𝑙 ∙ 𝐸𝐿𝑅 + 𝑐𝑜𝑛𝑠𝑡 

 Eq. 4.3 

 

where: 

𝑛𝑐𝑒 ~ N(μnce|σnce) 

𝑓𝑙~ N(μfl|σfl) 

𝑛𝑐𝑑𝑚~ N(μncdm|σncdm) 

OTHER 
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𝑠𝑚~ N(μsm|σsm) 

𝑑𝑖𝑠𝑡~ N(μdist|σdist) 

𝑒𝑙~ N(μel|σel) 

𝑐𝑜𝑛𝑠𝑡~ N(μconst|σconst) 

 

 

4.4.2 Parameter Estimation 
 

To estimate the model, a panel data approach is used to take into account the 

correlation between the answers of the same respondent who makes a choice in 6 

different scenarios. 200 Halton draws are used to simulate the random distribution of the 

variables (Train 2009; Hensher et al. 2005). Three measures of the goodness of fit are 

used: the likelihood for a model only including a constant (L0), the likelihood for the 

proposed model (LM), and the adjusted McFadden R squared (AdjR2) as in Case Study 1.  

 

NCE changes over the duration of the videos because some evacuees leave the 

environment (with flow FL). In the model, the average values at the beginning and at the 

end of the simulation were used. Since there is a large difference between the number of 

female and male respondents, the interaction between a dummy variable defining the 

respondent gender (GEND=1 if the respondent is female) and each environmental and 

social variable (Vi=NCE, FL, NCDM, SM, EX or DIST) was studied to check if the gender 

statistically affects the choice. The model specification in Equation 4.3 does not include 

the interaction terms because they are not statistically different from zero (p-

value>>0.05).The estimated parameters are shown in Table 4.4. 

 
 

4.4.3 Sensitivity analysis 
 

A sensitivity analysis is performed to show how the probability to choose an exit 

is influenced by the observed variables and their interaction. The effect of the number of 

evacuees near the two exits (NCE) and near the decision-maker (NCDM) is shown in 

Figure 4.7, whereas the influence of flow (FL), presence of smoke (SM) and emergency 

lights (EL), and distances (DIST) is presented in Figure 4.8. In Figure 4.7-a and 4.7-b 

NCE and NCDM range between 0 and 50 whereas the other variables are the same for 

both exits. In Figure 10, the number of evacuees close to the right-hand exit (NCE_R) is 
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fixed to 25 while the evacuees close to the left-hand exit (NCE_L) vary between 0 and 50. 

All the other variables are the same for the two exits. In Figure 4.8-a and 4.8-b the flow 

and distance of the right-hand exit are 0.5 persons/s and 10m respectively. 

 
Table 4.4 –Estimated model 

Total number of Observations = 9018 
Lo = -5419.025 
LM= -4284.297 

AdjR2 = 0.20798 
Parameter Coef. Std.Er. P-value Parameter 

μnce -0.1713 0.0107 -16.0148 0.0000 

μfl 1.1455 0.1380 8.3008 0.0000 

μncdm -0.1041 0.0090 -11.5533 0.0000 

μsm -1.0041 0.0852 -11.7836 0.0000 

μdist -0.0813 0.0114 -7.1273 0.0000 

μel 1.2291 0.0853 14.4012 0.0000 

μconst 0.0690 0.0364 1.8950 0.0581 

σnce 0.0549 0.0105 5.2446 0.0000 

σfl 1.6450 0.2477 6.6411 0.0000 

σncdm 0.0826 0.0171 4.8287 0.0000 

σsm 0.8860 0.1299 6.8194 0.0000 

σdist 0.1972 0.0192 10.2540 0.0000 

σel 1.1631 0.1228 9.4733 0.0000 

σconst 0.4436 0.1013 4.3804 0.0000 

 
 

 
(a) 

 
(b) 

Fig.4.7 –Sensitivity analysis for (a) NCE; (b) NCDM 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.8 –Sensitivity analysis for (a) FL; (b) DIST; (c) EL; (d) SM 

 

 

4.4.4 Model explanation 
 

A behavioural analysis is performed considering the averages of the parameter 

distributions. These behavioural findings provide an insight into the interaction of the 

impact of several factors on local exit choice. However, it is necessary to highlight that the 

behavioural results provided by the model refer to the experimental conditions given in 

the hypothetical scenarios and that these results are affected by the low ecological 

validity of the experiment. Therefore, a reader should be careful to generalize these 

findings for any other evacuation scenario. 

 

In general, the probability to choose an exit decreases when the number of evacuees 

close to it (NCE) increases, i.e. the decision-makers perceive a large number of evacuees 
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using an exit as an impedance. In other words, respondents demonstrate crowd 

avoidance behaviour with the evacuees near the two exits. The same tendency can be 

seen in the interaction with evacuees near the decision maker (NCDM). However, the 

distribution of NCDM implies that crowd avoidance behaviour is sometimes replaced by 

the herding behaviour. In fact, in Figure 4.9 it can be seen that the probability is high 

when the parameter associated with NCDM is positive. This means that there are 

respondents for whom the fact that many other evacuees head towards one of the two 

exits is an incentive to select the same exit. This can be explained by the fear to be 

negatively judged by other evacuees by choosing the ‘wrong’ alternative (normative social 

influence (Lovreglio, Fonzone, et al. 2016)), and/or by the attitude to consider other 

people’s decisions as a proof of the correctness of a choice (social proof theory) (Cialdini 

1993; Lovreglio, Fonzone, et al. 2016; Lovreglio, Fonzone, et al. 2014). In the Figure 4.9, 

it is also evident that NCE and NCDM have different distributions, i.e. there is a difference 

in the way respondents perceive these two variables, related to the same factor, the 

presence of other evacuees. This could be explained by the proxemics approach, which 

argues that the closer other people are to a decision-maker, the more the decision-maker 

is affected by them (Hall 1966). This phenomenon has been also observed in other 

previous VR experiments (Bailenson et al. 2003; Bailenson et al. 2008) showing that the 

social interactions are affected by the distances. 

 

 
Fig. 4.9 –Random distribution for (a) NCE and NCDM; (b) FL; (c) SM and DIST; (d) EL 
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not too far away from each other and therefore some participants did not consider 

distance as an important factor as most other did. 

 

Considering the averages of the random parameters in Figure 4.9, it is possible to argue 

that overall the respondents perceive the flow through the exits as a utility because higher 

flow rates allow faster evacuation whereas the presence of smoke have a negative impact 

on the choice since it could harm the decision-maker. Then, the presence of emergency 

lights increases, on average, the probability to choose an exit because it improves the 

functional affordance of the exit (Lovreglio, Ronchi, et al. 2015; Ronchi, Nilsson, et al. 

2015). However, Figure 8 shows that the parameters associated to FL, SM and EX have 

very large dispersions, as indicated by the standard deviations in Table 4. As a 

consequence, there is high probability that, for a specific decision-maker, the concerned 

parameters assume a sign different from that of the average decision-maker. The high 

dispersion can be due to a combination of the high level of heterogeneity in the 

preferences and respondents not considering these factors to make their choices (as it 

has been observed for the exit distance).   This modelling issue may be solved using 

bounded distributions such as a lognormal one.   However, this may reduce the model fit 

as well as lead to less accurate estimation of the mean value of the parameter (Hole & 

Kolstad 2011; Hess et al. 2005). Even though some solutions have been proposed, this is 

still an open modelling issue for discrete choice modellers, which needs to be investigated 

deeply in the future (Vij et al. 2013). 

 

The constant included in the utility function of the right-hand exit is not statistically 

significant (p-value = 0.07 > 0.05). This means that the right-hand exit is not chosen 

systematically more than the left-hand one under the social/physical conditions described 

in Table 3.  

 

Further information can be provided analysing the results of the sensitivity analysis. In the 

scenarios in which the variables are equal to zero for one door and equal to 50 for the 

other, the probability of selecting the left-hand side door is very close to 1 and 0 in Figure 

4.7-a, whereas in Figure 4.7-b the probability surface has the maximum and minimum 

equal to 0.85 and 0.12 respectively. Comparing the two charts, it can be seen that NCE 

influences (negatively) the probability to choose an exit more than NCDM. In other words, 

a decision-maker is more willing to choose the less congested exit when the other 
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evacuees are closer to the exit (NCE) than when they are close to them (NCDM) in the 

conditions given in the hypothetical scenarios used in this study. 

 

In Figure 4.8, the number of evacuees close to the right-hand exit (NCE_R) is fixed to 25 

while the evacuees close to the left-hand exit (NCE_L) vary between 0 and 50. All the 

other variables are the same for the two exits. In Figure 4.8-a and 4.8-b the flow and 

distance of the right-hand exit are 0.5 persons/s and 10m respectively. Figure 4.8-a and 

4.6-b show the existence of situations in which flow and distance are not determinant in 

the exit choice because the social factors are predominant. These situations occur when 

the curves in the figures tend to overlap. For instance, Figure 4.8-a shows that for low 

values of NCE_L (NCE_L<10), the flow does not influence the choice. In these 

conditions, the left-hand exit is almost free and definitely freer than the right-hand one 

(NCE_R=25) and therefore the decision-maker may reckon that he can escape quicker by 

using it, even though the capacity of the exit is low. For low values of NCE, the flow is 

difficult to evaluate for the decision maker, and so it can be assumed that the flow rate is 

the same for the two exits, leaving the number of evacuees as the only decision variable. 

In Figure 4.8-b, it can be seen that for high values of NCE_L (NCE_L>30) the distance 

from the left-hand exit does not affect the choice probability, since this exit is so crowded 

that the decision maker tends to avoid it anyway. When the number of close evacuees is 

the same for the two exits as in Figure 4.8-c (NPE_L=NPE_R=25), the probability to 

choose the left-hand exit depends on the presence of the emergency lights. The 

probability varies from 0.26 when there is not light on the left-hand exit but there is one on 

the right-hand one (EL_L=0 and EL_R=1), to 0.70 in the opposite case (EL_L=1 and 

EL_R=0). Figure 4.8-c also suggests that the decision-maker can neglect the information 

given by the emergency light. In fact, in the situation with emergency light on the right-

hand exit only, one would expect that the decision-makers avoid the exit on the left-hand 

side. Instead, the plot shows the left-hand exit has high probability to be chosen for 

medium-small values of NCE_L. That can be explained by the informational social 

influence (Nilsson & Johansson 2009), which predicts that the presence of other 

evacuees close to an exit indicated that that exit is an available alternative. Finally, Figure 

4.8-d shows how the presence of smoke can affect the choice considering different 

number of evacuees near the exits. In the condition given in the hypothetical scenarios, it 

seems that the presence of smoke close to an exit is less important than the choice of 

other evacuees. In fact, when there is smoke near the left-hand exit and the other exit is 
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clear (SM_L=1 and SM_R=0), the decision-makers prefer the former alternative if it is 

relatively uncongested (NCE_L approaching zero). 

 

 

4.5 Discussion 
 

This chapter introduces an exit choice based on Random Utility Theory, which 

allows the probability of a decision-maker to choose an exit to be predicted by considering 

six environmental and social variables. The model is estimated using the data collected 

through an on-line SP survey designed through Efficient Design. The results of this model 

need to be carefully investigated considering the low etiological validity and that these 

refer to the given experimental conditions. 

 

The findings show that presence of smoke, distance of the exit, number of evacuees near 

the exit or close to the decision-maker but moving towards the exit have a negative 

influence on the probability of the exit to be chosen. On the contrary, emergency lighting 

and flow of evacuees through the exit have a positive influence.  

 

The model shows that the perception of the variables and/or their relevance/weights in 

the decision makers is not constant among respondents, but the parameters associated 

to all the independent variables are normally distributed (i.e. Perceptions and Preferences 

Behavioural Uncertainty). Note that different parameters distribution can be tested using 

the mixed logit approach. In the absence of evidence on the distributions in this case, the 

normal one was selected since it is the most commonly used (Hess et al. 2005). 

However, this aspect should be investigated in future work.  

 

Compared to the existing literature, this study has the advantage to investigate the 

influence of more variables simultaneously expanding the current understanding of local 

exit choice in emergencies. In Table 4.5, the proposed model is compared to the existing 

ones. All the models have been fitted using our dataset – that is definitely larger than all 

the others - for a fair comparison. It can be seen that the fit of the model in terms of 

adjusted R2 indicator (which includes a penalty for each parameter included in the model) 
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is much better than the others, proving the need for considering all the environmental and 

social variables together. The table also shows the mean values of the parameters (the 

parameters are proven random in all the cases) in each model specification. It can be 

seen that there is a remarkable difference between the parameter of FL (the exit flow 

rate) in the specification proposed by Haghani et al. and in our model. The under-

specification of the former model may lead to wrong design choices whenever evacuation 

scenarios include smoke and emergency lighting. In fact, a design based on Haghani et 

al.’s results may overestimate the possibility of inducing evacuees to select an exit by 

make it larger. However, the model specification proposed by Haghani et al. may still be 

correct in evacuations which do not involve smoke and emergency lighting. 

 

Tab 4.5 – Comparison between the proposed model and the existing ones. 

 

Model specification Survey features 

RsqAdj* 
NCE FL NCDM SM EL DIST 

Sample 

size 
Video 

(Duives & Mahmassani 

2012) 

Yes 

(-0.087) 

** 

No 

(-) 

No 

(-) 

No 

(-) 

No 

(-) 

Yes 

(-0.055) 
117 no 0.089 

(Lovreglio, Borri, et al. 

2014) 

Yes 

(-0.134) 

No 

(-) 

Yes 

(-0.076) 

No 

(-) 

No 

(-) 

Yes 

(-0.088) 
191 yes*** 0.126 

(Haghani et al. 2014) 
Yes 

(-0.089) 

Yes 

(1.615) 

No 

(-) 

No 

(-) 

No 

(-) 

Yes 

(-0.082) 
53 no 0.125 

Proposed model 
Yes 

(-0.116) 

Yes 

(0.609) 

Yes 

(-0.077) 

Yes 

(-0.762) 

Yes 

(0.856) 

Yes 

(-0.053) 
1503 yes 0. 208 

* Referring to the models fitted with the dataset collected in our survey. 

** Mean of the parameter distribution. 

*** The degree on realism is definitely lower than that in the videos used in this study. 

 

Methodologically, a strength of this case study compared with the existing stated 

preference studied listed in Table 4.5 is the use of non-immersive VR to represent choice 

scenarios. This improves substantially the realism of the context the respondent has to 

evaluate, and so it increases the validity of the results. Our sample, made up of 1,503 

respondents from different parts of the world, is much larger than those used so far to 

investigate the local exit choice process in stated preference study (see Table 4.5). Even 

though some demographics of our sample are homogeneous (most of the participants are 

under 30), our sample is more heterogeneous than previous studies listed in Table 4.5 in 

terms of nationalities. This heterogeneous gives the possibility of exploring general 

features of the decision making process, which could be bounded by cultural attributes as 
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in the existing dataset. However, the results may be biased by the other demographic 

characteristics of the sample, in particular by the fact that most of the respondents are 

under 30 year. In this work, no significant difference between the choices of female and 

male respondents has been found. However, the influence of other demographic 

variables (i.e. age, nationality, etc.) should be analysed in future studies. 

 

This study was not designed with the purpose of recruiting a specific population target but 

with the purpose of collecting data from more than lower bound of the Efficient Design to 

investigate the behavioural uncertainty in local exit choice. However, using a posteriori 

analysis of the sample demographics it is possible to identify population target investigate 

in the survey. This model can be used for any building with population target similar to the 

one identify (i.e. university building, etc.). The methodology and the survey developed in 

this work can be used in future studies to investigate the behaviour of specific population 

targets defined a priori. 

 

Finally, in the research field, the parameters estimated in of this study can be used as a 

starting point for future Stated Preference studies based on Efficient Design and using 

more advanced technique such as immersive VR. 
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5. CASE STUDY 3: LOCAL MOVEMNT CHOICES 
 

 

5.1 Introduction 
 

The simulation and modelling of pedestrian navigation has received great 

attention during the last two decades in the field of evacuation dynamic (Kuligowski et al. 

2010). Those models can be classified into two classes: macroscopic and microscopic 

models (Kachroo et al. 2008a). To date, different modelling solutions have been used to 

model the individual behaviour of pedestrians, which can be divided into continuous, e.g., 

the social force model (Helbing et al. 2000) or network models, e.g., cellular automata 

(Torrens 2009), etc. There is not a definitive modelling approach that can be suitable for 

all possible scenarios to be simulated by fire engineers and crowd managers (Kuligowski 

et al. 2010). In fact, a specific modelling approach can be more appropriate to address a 

specific issue but not accurate enough to investigate several other issues. For instance, 

the scale of the evacuation problem (e.g., buildings versus large-scale evacuations), the 

infrastructure types, computational costs can be discriminant for the choice of a modelling 

approach rather than another (Kuligowski et al. 2010; Kachroo et al. 2008b). 

 

Despite the ‘proliferation’ of models and the improvements in modelling techniques, the 

calibration of navigation models for microscopic pedestrian simulation is an issue to which 

a definitive standard solution has yet to be defined (Guo et al. 2010). Different calibration 

approaches have been used, which can be divided into macroscopic and microscopic 

(Schadschneider et al. 2001). Macroscopic approaches may allow the parameters of the 

models to be calibrated by using fundamental diagrams (Schadschneider et al. 2001) or 

evacuation time estimations (Guo et al. 2012). In contrast, the microscopic approaches 

allow a model to be calibrated through the use of experimental trajectories 

(Schadschneider et al. 2001; Hoogendoorn & Daamen 2009). This second approach is 

more reliable, but it requires a more sophisticated fitting procedure (Schadschneider et al. 

2001). 
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There are two general numerical methods for parameter estimation which can be used: 

least-squares estimation (LSE) and maximum likelihood estimation (MLE) (Greene 2011). 

LSE identifies the set of parameters which minimizes the sum of the squares of the 

residuals (i.e. the difference between the observed points and the ones predicted by the 

model) whereas MLE is based on maximizing likelihood function (i.e. the probability of the 

model getting observed data by using defined parameter values). However, additional 

dedicated measures of relative distance error can be found in the literature (e.g. Least 

Absolute Deviations) (Bloomfield & Steiger 1983). Unlike LSE, which is primarily a 

descriptive tool, MLE is a preferred method of parameter estimation in statistics and it is 

an indispensable tool for many statistical modelling techniques, in particular in non-linear 

modelling with non-normal data (Myung 2003; Ortuzar & Willumsen 2011). In fact, MLE 

has many optimal properties in estimation (i.e. sufficiency, consistency, efficiency, and 

parameterization invariance) which are discussed by Green (2011) and Myung (2003). 

 

Different combinations of calibration approaches and numerical methods have been used 

to estimate the parameters for different pedestrian navigation models. For example, 

Berrou et al. (2007) used macroscopic approaches to calibrate the Legion model studying 

pedestrian flow and density fluctuations at bottlenecks. Chu (2009) proposed a 

macroscopic calibration for a cellular automaton evacuation model using LSE. Seer et al. 

(2014) proposed a calibration of the social force model (Helbing et al. 2000) through a 

microscopic method and LSE using data collected by Microsoft Kinect. Johansson et al. 

(2007) introduced a microscopic method to calibrate pedestrian-simulation models by 

using an ad-hoc relative distance error, and applied the method to the social force model. 

Antonini et al. (2006) proposed a microscopic pedestrian model based on discrete choice 

modelling, and calibrated it by the MLE using an experimental dataset of pedestrian 

trajectories. Hoogendoorn and Daamen (2007) introduced microscopic approach to 

estimate the NOMAD model by using MLE. Guo et al. (2010) proposed an approach 

based on the LSE to calibrate their logit-type pedestrian model using sample data on the 

deviation angles, step velocities, and walking speed-density relations obtained from 

experiments. Another approach is that used by Guo et al. (2012) based on the 

comparison between simulated evacuation times and observed evacuation times by using 

LSE. 
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This work introduces a new methodology for the calibration of pedestrian floor field 

cellular automaton models. These models are fine network microscopic models based on 

logit formulation which have been greatly developed after the pioneering works by 

Burstedde et al. (2001), and Kirchner and Schadschneider (2002). In fact, different 

authors have developed floor field cellular automaton models to predict pedestrian 

behaviour in different situations (i.e. emergency and non-emergency, indoor and outdoor 

scenarios) (Schadschneider 2002; Papadimitriou et al. 2009; Pelechano & Malkawi 2008; 

Kirchner et al. 2003). However, the main limitation of these models is that they may not 

be calibrated with experimental data and whether they are, they are not completely 

calibrated by using observed data (i.e. most of the time only a few parameters are 

calibrated). The present work introduces a methodology to estimate all the parameters 

included in these models by defining a likelihood function and using observed trajectories 

(i.e. microscopic approach). Moreover, the proposed methodology allows different model 

specifications to be compared in terms of fitting. A calibration example is presented in 

order to make a comparison between different model specifications using quantitative 

criteria. 

 

 

5.2 Modelling Assumptions and Likelihood Function 
 

The proposed methodology is applied to the existing floor field cellular automaton 

models for pedestrian dynamics. The basic structure of these models is the multinomial 

logit probability formulation described in Section 2.3. Since many different formulations 

and solutions have been proposed, the aim of following subsection (i.e. 5.2.1) is to 

generalize these formulations in order to build a general likelihood function as described 

in subsection 5.2.2. 

 

 

5.2.1 Floor Field Cellular Automaton Models  
 

The existing floor field cellular automaton models for pedestrian dynamics 

(Burstedde et al. 2001; Kirchner & Schadschneider 2002) assume the classical fine 
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network discretization, in which the walkable space is divided into cells which can either 

be empty or occupied by exactly one pedestrian. To date, different cell shapes (i.e. 

triangular, square, hexagonal, etc.) have been used (Torrens 2009). A squared mesh is 

used in this work given its simple implementation, although the methodology can be 

applied for any cell shape. Another assumption that need to be taken into account is the 

definition of the neighbourhood defining the possible movements for a pedestrian (e.g., 

Moore or von Neumann) (Gwizdałła 2015). In the present work, a Moore neighbourhood 

is used since it allows more movement directions (i.e. 8) if compared with the von 

Neumann neighbourhood (i.e. 4). However, it is also possible to use the proposed 

methodology assuming the von Neumann movement directions. 

 

Each agent can be located in one single cell (Cij) at each time-step or more than one cell 

can be occupied by a single agent (whenever the cell size is smaller than the pedestrian 

size) (Guo et al. 2012; Kirchner et al. 2004).  In the present work, the cell size matches 

with the pedestrian size (i.e. each agent can be located in one single cell) in order to have 

a simpler formulation, although the methodology can be applied when the cell size does 

not match the pedestrian size. 

 

Each agent can move to one of its unoccupied neighbour cells (Crs where r=i-1, i+1, s=j-1, 

j+1) or wait at its current one at each discrete time step interval (Figure 5.1). These 

transition rules are based on probabilities (pij) which are functions of the floor field. The 

floor field can be divided into two parts, namely Static and Dynamic (Burstedde et al. 

2001; Kirchner & Schadschneider 2002). 

 

 
Fig. 5.1 - Allowed choices for a Moore neighbourhood assumption and their probabilities. 
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The static floor field is generally used to define regions of space which are more attractive 

(i.e. pedestrians’ goals), such as an emergency exit or shop windows (Kirchner & 

Schadschneider 2002). It does not evolve with time and it does not depend on the 

presence of other pedestrians. It depends only upon the space and the goal of the q 

pedestrian and the presence of fixed obstacle (i.e., walls) (Burstedde et al. 2001). The 

value of S for Cij for q pedestrian can be generalized as follows: 

 

𝑆𝑖𝑗
𝑞 = 𝑓𝑠(𝑪𝒊𝒋, 𝑔

𝑞 , 𝒙𝒐|𝜽𝑺) Eq. 5.1 

 

where: 

𝑪𝒊𝒋 = {𝑥𝑖𝑗 , 𝑦𝑖𝑗}is the cell defined by the xij and yij spatial components; 

𝑔𝑞 is the goal of the q pedestrian; 

𝒙𝒐 is a vector including information concerning the location of fixed obstacles; 

𝜽𝑺 is the vector of the parameters defining the function fS(). 

 

In pedestrian modelling, different strategies have been developed to predict pedestrian 

goals (i.e. exit and path choice) (Lovreglio, Fonzone, et al. 2015). For instance, different 

path strategies (i.e. shortest time versus shortest way strategy (Kirik et al. 2011)) can be 

included in Equation 5.1. 

 

An example of a 20x20 cells room with two exits (i.e. exit 1 and exit 2) and no obstacles 

(Figure 6.2-a) can be used to clarify the meaning of Equation 5.1. In this case, the static 

floor field can have a different formulation according to the three possible goals of the q 

pedestrian (i.e. goal 1: exit 1, goal 2: exit 2, and goal 3: exit 1 or exit 2).  

 

Assuming Euclidean distance as a criterion to define the static floor field, Equation 5.1 

assumes three different formulations: 
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{
 
 

 
 𝑆𝑖𝑗

𝑞(𝑔𝑜𝑎𝑙 1) = √(𝑥𝑖𝑗 − 𝑥𝐸1)2 + (𝑦𝑖𝑗 − 𝑦𝐸1)2

𝑆𝑖𝑗
𝑞(𝑔𝑜𝑎𝑙 2) = √(𝑥𝑖𝑗 − 𝑥𝐸2)2 + (𝑦𝑖𝑗 − 𝑦𝐸2)2

𝑆𝑖𝑗
𝑞 (𝑔𝑜𝑎𝑙 3) = min  (𝑆𝑖𝑗

𝑞 (𝐸1), 𝑆𝑖𝑗
𝑞 (𝐸1))

 Eq. 5.2 

 

where 𝑥𝐸1, 𝑦𝐸1, 𝑥𝐸2 and 𝑦𝐸2 are the spatial coordinates defining the position of exit 1 

and exit 2 respectively. Figure 5.2 shows the result of these formulations. 

 

This example does not include the influence of fixed obstacles. However, a pedestrian 

could prefer to not get too close to an obstacle (e.g., a wall) given the so-called “effective 

width” principle (Pauls 1980). This can be represented by adding an extra term in 

Equation 5.2 that makes pedestrians less likely to occupy cells close to the wall or 

obstacles, or using different metrics (i.e. Manhattan, Dijkstra (Dijkstra 1959), etc.) 

(Alizadeh 2011; Kirchner & Schadschneider 2002). 

 

The dynamic floor field is a virtual trace left by the pedestrians through dynamic 

formulations defining its diffusion and decay (Kirchner & Schadschneider 2002). 

Therefore, it depends upon the space and the position (𝑪𝒊𝒋
𝒑

) of other p pedestrians (p≠q, 

p=1,…,P), the personal characteristics of the q pedestrian (i.e. gender, age, etc.) and 

other p pedestrians (i.e. leader, etc.) and other factors affecting the q pedestrian (e.g., fire 

(Li et al. 2008)) . The value of the dynamic floor field for Cij for a q pedestrian can be 

generalized as follows: 

 

𝐷𝑖𝑗
𝑞 = 𝑓𝐷 (𝑪𝒊𝒋, 𝑪𝒊𝒋

𝒑
, 𝒙𝒒, 𝒙𝒑, 𝒙𝒇|𝜽𝑫)    𝑝 = 1,… , 𝑃 Eq.5.3 

 

where: 

𝒙𝒒 is the vector including personal characteristics of the q pedestrian; 

𝒙𝒑 is the vector including personal characteristics of the other p pedestrians; 

𝒙𝒇 is the vector including other factors; 

𝜽𝑫 is the vector of the parameters defining the function fD(). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.2 – Static floor fields for 20x20 cells room with two exits for a pedestrian having (a) Exit 1, (b) Exit 2 

and (c) both of them as goal. 

 

In this work, the dynamic floor field is assumed to include all the interactions of a 

pedestrian with all the dynamic elements included in the environment (e.g. other 

pedestrians, fire, smoke, etc.). Therefore, Equation 5.3 can include all the social 

interactions affecting pedestrian behaviours such as leader-follower behaviours, and 

proxemics behaviour (Ezaki et al. 2012). 
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The probability of q pedestrian choosing the Crs cell is here represented using a 

multinomial logit formulation (Burstedde et al. 2001; Kirchner & Schadschneider 2002): 

 

𝑝𝑟,𝑠
𝑞 = 

𝑒  (𝑘𝑠𝑆𝑟,𝑠
𝑞
+𝑘𝐷𝐷𝑟,𝑠

𝑞
+𝑓𝑟,𝑠(𝒙

𝒏|𝜽𝑵))(1 − 𝛾𝑟,𝑠)𝛿𝑟,𝑠

∑ 𝑒  (𝑘𝑠𝑆𝑟,𝑠
𝑞
+𝑘𝐷𝐷𝑟,𝑠

𝑞
+𝑓𝑟,𝑠(𝒙𝒏|𝜽𝑵))(1 − 𝛾𝑟,𝑠)𝛿𝑟,𝑠(𝑟,𝑠)

 

 

𝑟 = 𝑖 − 1,… , 𝑖 + 1; 

𝑠 = 𝑗 − 1,… , 𝑗 + 1 

Eq. 5.4 

 

where: 

𝑘𝑠 is a parameter defining the weight of 𝑆𝑟,𝑠
𝑞

for the choice of Crs which could depend on 

the personal characteristics of the q pedestrian (i.e. 𝑘𝑠(𝒙
𝒒)); 

𝑘𝐷 is a parameter defining the weight of 𝐷𝑟,𝑠
𝑞

for the choice of Crs which could depend on 

the personal characteristics of the q pedestrian (i.e. 𝑘𝐷(𝒙
𝒒)); 

𝑓𝑟,𝑠() is a function including the other n factors (𝒙𝒏) influencing the choice (i.e. 

inertia(Guo et al. 2012), direction of the q pedestrian (Yue et al. 2010), etc.); 

𝜽𝑵 is the vector of the parameters defining the function 𝑓𝑟,𝑠(); 

𝛾𝑟,𝑠 is a dummy variable equal to zero when Crs is occupied by another pedestrian and to 

one when it is empty; 

𝛿𝑟,𝑠 is a dummy variable equal to zero when Crs is a blocked cell (i.e. if there is an 

obstacle such as a wall) and to one otherwise. 

 

Further assumptions can be added to the ones listed above to make the model closer to 

reality (see, for instance, the non-homogeneous cellular automata framework proposed 

by Was and Lubas (2014), the different walking abilities investigated by Fu et al. (2015) 

the modified dynamic floor field model proposed by Guo et al. (2015)). Two other key 

issues of this modelling framework that need to be discussed are conflict resolution (when 

more than one pedestrian compete for the same cell) and multi-velocities (Fu et al. 2015). 

Different solutions have been proposed to solve both issues (see (Fu et al. 2015; Weifeng 

& Kang Hai 2007; Burstedde et al. 2001)) and can be added to the general formulation 
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described above. The proposed methodology is applicable for different types of 

formulation as far as the multinomial logistic assumption shown in Equation 5.4 is kept. 

 

In this section, a general formulation has been used to define fS(), fD(), and fr,s() although 

they can have different formulations. Once fS(), fD(), and fr,s() have been defined, 

𝜽𝑺,𝜽𝑫,𝜽𝑵, 𝑘𝑠 and 𝑘𝐷 need to be calibrated. This issue is addressed in this work by 

using navigation data (e.g. experimental data-sets or pedestrian trajectories from actual 

observations) and MLE by using the formulation described in the following section. 

 

 

5.2.2 Likelihood function 
 

Let 𝑻𝒒 = {𝑪𝟏
𝒒
, … , 𝑪𝒕

𝒒
, … , 𝑪𝒏

𝒒
} be the n-vector including all the observed cells 

occupied by a q pedestrian for each consequential time step (t=1,…,n) to achieve his goal 

𝑔𝑞 and interacting with other p pedestrians (p=1,…,P) occupying 𝑻𝒑 = {𝑪𝟏
𝒑
, … , 𝑪𝒏

𝒑
} 

cells during the same time steps. Therefore, the probability of q pedestrian passing from 

𝑪𝒊
𝒒

 to 𝑪𝒊+𝟏
𝒒

can be defined using Equation 5.5: 

 

𝑃(𝑪𝒊
𝒒
→ 𝑪𝒊+𝟏

𝒒
) = 

= 𝑝𝑞(𝑪𝒊
𝒒
, 𝑪𝒊+𝟏

𝒒
, 𝑔𝑞 , 𝑪𝒊

𝒑
, 𝒙𝒐, 𝒙𝒒, 𝒙𝒑, 𝒙𝒇, 𝒙𝒏|𝜽𝑺, 𝜽𝑫, 𝜽𝑵, 𝑘𝑠 , 𝑘𝐷)      

𝑝 = 1,… , 𝑃 

Eq. 5.5 

This probability depends on the position of the q pedestrian (𝑪𝒊
𝒒
, 𝑪𝒊+𝟏

𝒒
), his/her goal (𝑔𝑞), 

the position of all other p pedestrians (𝑪𝒊
𝒑

) and all the variables (𝒙𝒐, 𝒙𝒒, 𝒙𝒑, 𝒙𝒇, 𝒙𝒏) 

defined in Equation 5.3 and 5.4 which can be observed and collected (i.e., known values). 

Therefore, the probability of having the 𝑻𝒒 trajectory can be defined as the product of the 

single choices (𝑪𝒊
𝒒
→ 𝑪𝒊+𝟏

𝒒
) (i.e. panel data (Train 2009)): 

 

𝑃(𝑻𝒒) =  ∏𝑃(𝑪𝒊
𝒒
→ 𝑪𝒊+𝟏

𝒒
)

𝒏−𝟏

𝒊=𝟏

 Eq. 5.6 
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However, some of the parameters (𝜽 = {𝜽𝑺, 𝜽𝑫, 𝜽𝑵, 𝑘𝑠, 𝑘𝐷}) defining the  

𝑃(𝑪𝒊
𝒒
→ 𝑪𝒊+𝟏

𝒒
) can have their own random distribution (i.e. random parameter models 

(Train 2009; Greene 2011; Hensher et al. 2005)). Therefore, the unconditioned probability 

can be defined as (Train 2009):  

 

𝑃̅(𝑻𝒒) = ∫𝑃(𝑻𝒒|𝜽)𝑓(𝜽│𝜶) 𝑑𝜽 Eq. 5.6 

 

Where f() is the probability density function of 𝜽 parameters whereas 𝜶 is the vector of 

the parameters characterizing the probability distribution f(). Since Equation 5.7 has not a 

closed formulation, it is possible to use a Monte Carlo approach to simulate 𝑃̅(𝑻𝒒) (Train 

2009; Hensher et al. 2005). Let 𝜽̅𝒊 be one of the R draws from 𝑓(𝜽│𝜶), the simulation of 

𝑃̅(𝑻𝒒) can be calculated using the following equation: 

 

𝑷̇(𝑻𝒒) =  
1

𝑅
∑𝑃(𝑻𝒒|𝜽𝒊)

𝑅

𝑖=1

 Eq. 5.7 

 

The likelihood function associated with the Q observed q pedestrians can be written as: 

 

𝐿(𝜽𝑺, 𝜽𝑫, 𝜽𝑵, 𝑘𝑠, 𝑘𝐷) =  ∏𝑷̇(𝑻𝒒)

𝑸

𝒒=𝟏

 Eq. 5.8 

 

The variables of this function are the parameters that need to be calibrated (i.e., 

𝜽𝑺, 𝜽𝑫, 𝜽𝑵, 𝑘𝑠, 𝑘𝐷). These parameters can be estimated by maximizing L() by using 

several optimization methods (Greene 2011). For convergence reasons, it is more 

common to use the log-likelihood function rather than the likelihood function itself 

(Hensher et al. 2005): 
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𝐿𝑜𝑔𝐿(𝜽𝑺, 𝜽𝑫, 𝜽𝑵, 𝑘𝑠 , 𝑘𝐷) =  ∑ 𝒍𝒐𝒈(𝑷̇(𝑻𝒒))

𝑸

𝒒=𝟏

 Eq. 5.9 

 

 

5.3 Dataset 
 

A dataset is here presented to provide an application of the proposed 

methodology. This is made using pedestrian navigation data (i.e. pedestrian trajectories) 

collected in a VR experiment. More information about the experiment can be found in 

Ronchi et al. (2015). In the present case study, the scope is to analyse pedestrian 

navigation of single pedestrians in the proximity of emergency exits in case of evacuation, 

i.e., the trajectories adopted by evacuees when approaching emergency exits. 

 

 

5.3.1 The VR experiment 
 

The VR experiment was carried out in VR laboratory of Lund University (Sweden) 

in 2014, where participants were immersed in a VR environment. The VR laboratory 

consists of a main hall (200 m2 with a 7 m high ceiling) and a room for development and 

instruction to participants. The laboratory includes a Cave Automatic Virtual Environment, 

i.e. the Black Box. This technology consists of a back projection system with three screen 

segments, each 4 m wide. In addition, the VR environment is also projected on the floor 

(see Figure 5.3). The VR environment is projected using polarized light to generate a 3D 

view of the environment. Participants navigated the VR environment using a joypad and 

their position is monitored in real time by the navigation software. The VR environment 

consisted of a portion of a road tunnel based on the design of a real world project and it 

was drawn using a 3D modelling software (SketchUp), and imported into the game engine 

Unity3D. 

 



 128 

 

Fig. 5.3 - Test participant navigating through the tunnel evacuation scenario in the Cave Automatic Virtual 

Environment system. 

 

 

5.3.2 Participants 
 

A total of 96 participants took part in the experiment (68 male and 28 female). 

Test participants’ age ranged from 19 to 64 years old (average=25.15 years and standard 

deviation=7.4 years). Most of them were of Swedish nationality (90.6%). The sample was 

mainly made of students (81 people, i.e., 84.4% of the participants), while the rest of the 

sample included people of different ages and professions (e.g. lecturers, technicians, 

managers, etc.). 
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5.3.3 Experimental procedure 
 

Once the participants had arrived in the Cave Automatic Virtual Environment, 

they were briefly instructed on the equipment in use for the experiment (i.e. how to 

navigate the VR environment with the joypad). Then the navigation in the tunnel was 

started. Participants were asked to navigate a VR three-lane tunnel in the Cave Automatic 

Virtual Environment system (see Figure 5.3 and 5.4). Participants were initially located in 

the proximity of their car (outside the car) and their position was in the middle of two exits 

(Exit 1 and Exit 2 in Figure 5.4). The VR scenario had a total length of 200 m, where 100 

m is the distance between the exits, which are distant 50 m from the ends of the VR 

scenario. Participants had to reach one of the two emergency exits navigating individually 

(i.e. the participants do not interact with each other or with any other agent in the 

scenario).The navigation ended once they had reached an emergency exit. 

 

 

5.3.4 Pedestrian navigation 
 

The maximum speed during the navigation in the VR scenario was fixed to 

1.3m/s in order to match a typical average walking speed of an adult population 

(Korhonen et al. 2010), whereas the position of each participant in the virtual environment 

was recorded at a time-step equal to 0.5s. In the present study, two regions of interest 

have been defined in the proximity of the exit (see Figure 5.4) given the scope of the 

analysis (i.e. the study of pedestrian evacuation navigation in the proximity of an 

emergency exit). 

 

 

Fig.5.4 - Schematic representation of the layout of the tunnel during the experiments. The elements within 

the tunnel (cars, exits, etc.) are off scale to facilitate the reading of the figure. 
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Nine participants eventually used Exit 1, while eighty-five participants used Exit 2. Figure 

5.5 shows the observed trajectories in the regions of interest. It should be noted that data 

from the two regions of interests have been merged in Figure 5.5 to facilitate the 

visualization of the trajectories. The coordinates of the centre of the exit are X=0 m and 

Y=0 m in the new local system of reference referring to the participants using that exit. 

 

 

Fig 5.5 – 96 trajectories of the participants in the merged region of interest. The trajectories of 9 participants 

(black lines) reaching Exit 1 are mirrored and overlapped to those of the remaining 87 participants (grey 

lines). The trajectories are plotted in a local system of reference (X parallel to longitudinal axis of the tunnel, 

Y orthogonal to longitudinal axis of the tunnel) having origin centre of the exit. All measures are expressed 

in metres. 

 

Two-dimensional square cells were employed to sub-divide the space in the regions of 

interest. The size of each cell is 0.333x0.333m2 since the maximum number of people 

can stand in a square metre is 9 (Zhang et al. 2011). Frequencies of participants moving 

through each cell were calculated. Figure 5.6 shows the frequency of use for each cell. 

 

The cells occupied by each participant at each time step have been analysed. Figure 5.7 

shows an example of cells occupied based on a sample hypothetical trajectory. 

Therefore, it is possible to build up a dataset detecting all the choices made by each 

participant at each time step. In fact, each participant is assumed to occupy one cell (i.e. 

starting cell) and to occupy one of 9 possible cells (i.e. to move to one of the 8 

neighbouring cells or to remain in the starting cell) every time step. Therefore, it is 
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possible to define the choices made by detecting his/her starting and final position every 

time step (i.e. Tq, see Section 5.2.2). A total of 6239 choices were collected. Therefore, 

once a pedestrian model has been specified, it is possible to use this dataset to estimate 

parameters maximizing Equation 10. 

 

 

Fig 5.6 – Frequencies of participants moving through each cell of the region of interest. A participant was 

only counted once after entering a cell, so that participants standing in a cell would not be weighted more 

than participants who moved through a cell without waiting. 

 

 

 

Fig. 5.7 – An example of cells occupied at each consequential time step following a sample hypothetical 

trajectory. 
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5.4 Model Calibration 
 

5.4.1 Model Specification 
 

In this experiment, the participants navigated in an environment which did not 

included any other p pedestrians (i.e. individual navigation) or factors (𝒙𝒇) that can affect 

the participants. Therefore, only the parameters included in static floor field (Equation 5.2) 

and the cellular automaton model (Equation 5.4) can be calibrated. 

  

In this work, the static floor field is assumed to have the following formulation: 

 

𝑆𝑖𝑗
𝑞 = √(𝑥𝑖𝑗 − 𝑥𝐸)2 + 𝑧 (𝑦𝑖𝑗 − 𝑦𝐸)2 Eq. 5.11 

 

This function is not influenced by the goal of the pedestrian since there is a single goal 

(i.e. the evacuation exit defined by the coordinates: xE and yE). Then, it is a generalization 

of the widely used Euclidean metric (i.e. radial floor field). This metric is chosen in this 

example since there is no obstacle in the region of interest (Alizadeh 2011; Kirchner & 

Schadschneider 2002). In fact, if z (i.e. distortion parameter) is equal to one then the field 

is defined by the Euclidean distance. Figure 5.8 shows the static floor field for z equal to 

0.5, 1 and 2 respectively. 

 

The cellular automaton model used in this model is defined by the following equation: 

 

𝑝𝑟,𝑠
𝑞 = 

𝑒  (𝑘𝑠𝑆𝑟,𝑠
𝑞
)(1 − 𝛾𝑟,𝑠)𝛿𝑟,𝑠

∑ 𝑒  (𝑘𝑠𝑆𝑟,𝑠
𝑞
)(1 − 𝛾𝑟,𝑠)𝛿𝑟,𝑠(𝑟,𝑠)

 

 

𝑟 = 𝑖 − 1, … , 𝑖 + 1; 

𝑠 = 𝑗 − 1,… , 𝑗 + 1 

𝑘𝑠~𝑁(𝜇𝑘, 𝜎𝑘) 

Eq. 5.12 
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The model proposed in Equation 5.12 assumes that pedestrians could have different 

interactions with the static floor field. In fact, ks is assumed normally distributed. The 

dynamic floor field has been not included in Equation 5.12 since the exemplary dataset in 

use does not include interactions between pedestrians.  

 

 

(a) 

 

(b) 

 

(c) 

Fig.5.8 – Static floor field defined by Equation 11 for (a) z=0.5, (b) z=1, and (c) z=2 

 

 

Then, the log-likelihood function defined by Equation 5.10 can be calculated for the 

proposed case study by using the information concerning the cells occupied by each 

participant at each time step. 
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Both conflict resolution and multi-velocities described in Section 5.2.1 are not taken into 

account in this work. In fact, the former cannot be investigated since participants navigate 

individually without competing. The latter is not taken into account because the 

participants navigate at the maximum velocity (i.e.  1.3m/s) during almost the entire 

navigation. However, the model takes into account the possibility that a pedestrian can 

stop or reduce his/her speed since s/he is allowed to occupy the same cell for more than 

one time iteration (see Equation 5.4). 

 

 

5.4.2 Parameter Estimation 
 

Different nested models (i.e. models in which the degree of complexity can be 

decreased by imposing a set of constraints on the parameters) are estimated in this work 

by using several assumptions for the z parameter introduced in Equation 5.11 (see Table 

5.1). 

 

Case 1 in Table 5.1 corresponds to a static floor field defined by the Euclidean distance 

assuming z equal to one.  The second case assumes that the z corresponds to any 

possible constant value. In cases 3-4, it is assumed that the z is function of the X (i.e. 

longitudinal distance from the exit) corresponds to different polynomial formulations (i.e. 

degree of a polynomial = 1, …,2). The formulation of k as function of X has been selected 

since, in general, pedestrians tend to move following the longitudinal direction of the 

tunnel when they are far from the exit and they start modifying their trajectories once they 

are ‘close’ to it (Fridolf, Ronchi, et al. 2013). 

 

Tab. 5.1 – Assumptions for k parameter (see Equation 5.11) 

Case Formulations 

1 𝑧 = 1 

2 𝑧 = 𝑎 

3 𝑧 = 𝑎 + 𝑏 ∙ 𝑎𝑏𝑠(𝑋) 
4 𝑧 = 𝑎 + 𝑏 ∙ 𝑎𝑏𝑠(𝑋) + 𝑐 ∙ 𝑋2 

 

In this work, the Quasi-Newton method called Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) is employed to find the value of the parameters maximizing the log likelihood 
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function (Greene 2011). This method allows the Hessian to be estimated for the optimal 

solution. Therefore, it is possible to verify whether the parameters defining floor field and 

cellular automaton model are statistically different from zero by using t-test (Greene 

2011). 

 

The estimated parameters for the 4 cases are shown in Table 5.2. Considering the model 

specification proposed in this study (see Equation 5.11 and 5.12 and Table 5.1), the 

parameters that need to be estimated are: μk (i.e. the mean value of the normal 

distribution defining ks, see Equation 5.12), σk (i.e. the standard deviation of the normal 

distribution defining ks, see Equation 5.12), a, b and c (i.e. parameters defining the 

functional dependence of z from X, see Table 5.1). Table 5.2 also includes the value of 

the log-likelihood (LL) for a model in which all parameters are null (see case 0). In this 

case, a pedestrian randomly selects the next cell. This value has been estimated in order 

to calculate the adjusted McFadden R squared (AdjR2). AdjR2 suggests the level of 

improvement over the intercept model (i.e. case 0) offered by the given models (i.e. cases 

1-4) (Hensher et al. 2005). Since the estimated models are nested, it is possible to use 

the likelihood ratio test (LRT) to compare the fit of those models. Each model was 

compared with the previous one in order to verify whether the increased degree of 

complexity fits significantly better the data (i.e. case 1 is compared with case 0, case 2 

with case 1 and so on).è’ 

 

 

5.4.3 Model explanation 
 

Table 5.2 shows that the model defined by case 1 (i.e. radial floor field) results in 

the lower fitting of the data with an AdjR2 equal to 0.357. Differently, the models proposed 

in cases 2-4 demonstrate that there is a better agreement when the z parameter has a 

value lower than 1 (Figure 5.9). Moreover, the models defined in cases 3 and 4 show that 

this parameter decreases with the distance from the X axis. This result is in line with the 

fact that the z parameter tends to zero for very high value of X. In fact, setting z=0 in 

Equation 5.11 the floor field is defined by parallel lines which are orthogonal to the X axis 

whereas the stream lines are parallel to the X axis. In other words, results show that a 
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modified Euclidean metric (z≠1) performs better than the classical Euclidean metric (z=1) 

when there are no obstacles in the navigation. 

 

Tab. 5.2 – Estimated parameters for the four cases 

 
0 1 2 3 4 

LL 13708.0 -8816.0 -8199.6 -8192.2 -8171.8 

µk* - -6.0440 -8.3190 -8.3690 -8.3700 

p-val - 0.0000 0.0000 0.0000 0.0000 

σk* - 0.0000 0.0000 0.0000 0.0000 

p-val - 1.0000 0.9990 1.0000 1.0000 

a - 1.0000 0.2940 0.3380 0.4270 

p-val - fixed 0.0000 0.0000 0.0000 

b - - - -0.0030 -0.0190 

p-val - - - 0.0000 0.0000 

c - - - - 3.0*10-4 

p-val - - - - 0.0000 

AdjR2 - 0.3570 0.4010 0.4020 0.4040 

LRT** - 0.0000 0.0000 0.0000 0.0000 

* ks is assumed normal randomly distributed, i.e. ks ~ N(μk|σk). 
** each model is compared with the previous one: LRT(casei vs. casei-1) (i.e. case 1 is compared with case 
0, case 2 with case 1 and so on) 

 
 

 

Fig. 5.9 – Variation of z parameter along the longitudinal distance from the exit (i.e. X) for case 2 (i.e. z is 

assumed constant), case 3 (i.e. z decreases linearly with X) and case 4 (i.e. z decreases quadratically with 

X) defined in Table 1. 
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Table 5.2 shows that the model which better fits the observed trajectories in terms AdjR2 

is that described by the case 4. However, since AdjR2 does not predict whether this 

model makes a significant contribution respect to the others, the likelihood ratio test is 

used to compare the estimated nested models. The results of this test show that all 

models (i.e. cases 1-4) improve the fitting of the data if compared with the previous case 

(see LRT in Table 5.2). Therefore, the model described by case 4 best fits the data. This 

model assumes that the z parameter changes following a quadratic function of X passing 

from 0.43 for X=0m to 0.17 for X=20m (Figure 5.9). Figure 5.10 shows the level lines and 

streamlines for the floor field defined by the case 4. The streamlines show that a 

pedestrian does not move following a radial path (i.e. following a linear path) but s/he 

prefers to walk increasing his/her steering with the decrease of the longitudinal distance 

(i.e., X) from the exit following a curved path. 

 

 

Fig. 5.10 – Estimated static floor for case 4 (see Table 2) in grey and streamlines in blue. 

Finally, Table 5.2 shows the improvements of AdjR2 for cases 3 and 4 are marginal, even 

though they are statistically significant. Therefore, a modeller could prefer a simpler 

model (i.e., case 2) to save computational power. 

 

 

5.5 Discussion 
 

The methodology proposed in this chapter allows all the parameters defining a 

floor field cellular automaton model to be calibrated by using observed experimental 

trajectories (i.e. microscopic calibration). In fact, the parameters defining both static and 

dynamic floor field (see Equation 5.2 and 5.3) and the cellular automaton model (see 

Equation 5.4) are selected by maximizing the log-likelihood function defined in Equation 
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5.10. The proposed methodology is based on MLE since it is deemed to be more suitable 

for this optimization problem if compared with LSE (i.e. logistic regression) (Greene 

2011). 

 

Covariance matrix of the parameters are also estimated by using the hessian of the log-

likelihood function (Greene 2011). Therefore, it is possible to verify whether the estimated 

parameters are statistically different from zero by applying a statistical test (e.g. t-test). 

This is a strength of the methodology since it introduces quantitative criterion to prove the 

statistical need for new parameters included in their navigation models (Chu 2009; 

Schadschneider & Seyfried 2010). 

 

A strength of the proposed methodology is that it allows different model specifications to 

be compared (i.e. to test the fitting of different models with experimental data) by using 

different statistical methods. The likelihood-ratio test can be used if the models under 

consideration are nested whereas different statistics (e.g. Akaike’s information criterion,  

Bayesian information criterion, etc. (Greene 2011)) can be used to compare non-nested 

models. Therefore, this methodology allows the comparison of both static and dynamic 

floor fields (see Equation 5.2 and 5.3) as well as cellular automaton models (see Equation 

5.4). 

 

The present methodology can also be used to compare the same model using different 

datasets (i.e., real experiment versus VR experiment; non-emergency versus emergency 

situations, etc.). This overcomes a limitation of the present study, i.e. the sources of 

uncertainties in experimental data-sets (e.g., VR navigation may not correspond to real 

pedestrian navigation, given the use of joypad, there may be uncertainties in the 

collection of trajectories in a real evacuation experiment, etc.). Moreover, the type of 

navigation (i.e. non-emergency versus emergency situations) can affect the value of the 

estimated parameter in different manners.   

 

The present work improves the classical logit formulation of the cellular automaton 

models by introducing random parameters (i.e. mixed-logit model) using the random 

parameter formulation discussed in Section 2.3. 
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The proposed methodology requires observed data which can be difficult to collect 

(Lovreglio, Ronchi, et al. 2014; Chu 2009). A solution to this issue could be the creation of 

an open data-set to test different models as it is commonly done in the image processing 

field (e.g. FERET database (Phillips et al. 1998)). However, this may open a discussion 

concerning the quality of the datasets themselves (which involves the validity of the data-

collection methods, uncertainties) and if those datasets can be used to represent 

behavioural uncertainty (i.e., the uncertainty caused by the presence of human factors) 

(Lovreglio, Ronchi, et al. 2014; Ronchi et al. 2013). One key issue that needs to be 

addressed in future studies is the investigation of criteria to define the reliability of the 

datasets to be used for model calibration (Gwynne et al. 2005). This involves several 

issues such as the uncertainty and limitations associated with the data collection methods 

used in the production of the dataset. In addition, a dataset should be representative of a 

specific scenario (e.g. type of building) and of a specific segment of population defined by 

demographic variables (e.g. age, gender, nationality, etc.). Therefore, an open research 

question is: ‘how many and what type of trajectories are required to define a dataset 

reliable for a specific situation and population?’. Future studies could reply to this question 

by applying the proposed methodology to existing open datasets. At the moment, 

examples of open datasets concerning pedestrian trajectories have been released by the 

University of Wuppertal (experimental data-sets) (Seyfried et al. 2010; J Zhang et al. 

2011; Jun Zhang et al. 2011; Steffen & Seyfried 2009) and non-experimental datasets 

(i.e. pedestrians were engaged in their daily activities without being aware of being 

recorded) collected at the Informatics Forum of the University of Edinburgh (Majecka 

2009). Any dataset could be tested with the proposed methodology as far as it includes 

information about both trajectories and velocities and the time resolution is small enough 

to investigate which cell of the pedestrian’s neighbourhood is selected at each time step 

(see Section 5.3.2). 

 

In the exemplary implementation, different hypothetical static floor fields have been tested 

(see Equation 5.11 and Table 5.1). Floor fields are studied modifying the Euclidean metric 

using a distortion parameter (z). In this work, different polynomial formulations are 

compared. However, future works could investigate several other formulations (e.g. 
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exponential one). In fact, it could be that the formulation for z, which better fits the 

observed trajectories, can change in accordance with the navigation environment or 

pedestrian characteristics. 

 

A limitation of this work concerns the data used for the exemplary application of the 

modelling framework proposed. In fact, the dataset does not allow the calibration of a 

dynamic floor field and conflict model since the participants navigate individually in the 

tunnel without interacting with other pedestrians. In fact, pedestrian navigation data in VR 

were obtained assuming fixed walking speeds of individuals, which did not include 

pedestrian interactions.  Therefore, future studies are necessary to collect new datasets 

including more realistic pedestrian navigations and social interactions between 

pedestrians in order to calibrate both static and dynamic floor fields. Other future studies 

could address the same issue by using existing pedestrian datasets (Seyfried et al. 2010; 

J Zhang et al. 2011; Jun Zhang et al. 2011; Steffen & Seyfried 2009; Majecka 2009) 

overcoming the limitation of this work (i.e. limited sample size, the use of data only from 

VR). Moreover, these datasets could be useful to study different solutions for multi-

velocities. In fact, this issue is not investigated in this work since the participants 

navigated using the maximum speed during most of their paths. 

 

In the proposed exemplary calibration case study, a new formulation based on the 

random parameters is used (Equation 5.12). This formulation assumes that pedestrians 

have a different interaction with the static floor field by using a normal random distribution 

for ks. Results show that the standard deviation of this parameter is not statistically 

different from zero for any of the cases (see Table 5.2). This means that this parameter is 

constant among the participants. Despite this tendency, the randomness of the observed 

trajectories (see Figure 5.5) can still be modelled since the classical floor field cellular 

automaton models implement a stochastic formulation (see Equation 5.4). This absence 

of heterogeneity for ks (i.e. it is constant among the participants) can be due to limited 

number of participants involved in the navigation or be associated with the use of VR 

data. Future studies are needed to investigate this issue using different types of datasets 

(e.g., real evacuation data) and larger samples. 
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6. CONCLUSIONS 
 

 

This thesis aims at developing new decision-making models to improve existing 

evacuation models by overcoming part of their weaknesses. Several authors (Groner 

2004; Kuligowski 2013; Gwynne et al. 2015) have highlighted that the main issue of 

existing evacuation models is their scarce ability to predict evacuees’ decision-making 

about when, where and how they move to reach a safe place during an emergency. In 

fact, evacuees’ behavioural actions are often an input of several existing evacuation 

models rather than an output of these models (Kuligowski et al. 2010; Gwynne et al. 

2015). To overcome such a limitation, this thesis has investigated the advantages and 

disadvantages of the use of Random Utility Theory to develop new evacuation decision-

making models for the simulation of the evacuees’ decision-making process. To pursue 

this goal, an analysis has been performed comparing the assumptions underpinning this 

theory and the behavioural assumptions in evacuation decision-making processes. 

 

From a theoretical point of view, Section 2.1 has shown that Random Utility Theory 

assumptions do not conflict with the existing knowledge on evacuees’ decision-making 

processes and that this theory can be used to develop new evacuation decision-making 

models for several reasons. First, this theory is suitable for microscopic approach (i.e. 

agent-based approach) to simulate the evacuation process since it provides a 

mathematical framework for disaggregated behavioural models (Cascetta 2009; Ortuzar 

& Willumsen 2011). Second, the analysis has highlighted that most of the decisions taken 

during evacuation are discrete and Random Utility Theory can be used to simulate these 

discrete evacuation choices since it provides one of the most used/flexible mathematical 

frameworks to develop discrete choice models. However, the literature has proved that 

this framework can still be used for modelling continuous choices by transforming them 

into equivalent discrete choices. This transformation may introduce some limitations. For 

instance, dividing the space into discrete cells as described in Chapter 5 does not allow 

proper investigation of scenarios characterized by high density. In fact, this approach 

assumes that all people are the same size as the grid cell and therefore the maximum 

density is an input value rather than an output of the model. Another solution to model 
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continuous choices can be the use of a continuous spatial choice model, i.e. an extension 

of the discrete choice models for decision involving continuous variables (Ben-Akiva & 

Watanatada 1981).However, the pros and cons of such an approach have not been 

investigated in this thesis. Third, the paradigm of rational behaviour is in line with the 

findings on human behaviour in fire showing that evacuees act rationally without really 

panicking. However, Section 2.1.3 points out that in situations characterized by time 

pressure and complex decision making tasks (i.e. many possible alternatives to be 

analysed), evacuees may not choose the best option among those available but the one 

which can satisfy minimum criteria (Simon 1956; Gwynne et al. 2015). Therefore, in these 

circumstances a random utility model needs to be coupled with a sub-model extracting a 

partial choice set from the complete choice set depending on the time available to 

process the information. This modelling issue has not been investigated in this thesis and 

it could be a further development of this work as suggested in the following Section 6.2. 

Finally, from a modelling viewpoint, the mathematical framework derived from Random 

Utility Theory allows the simulation of the behavioural uncertainty related to human 

behaviour in fire. 

 

In this thesis, the formulation provided by Mixed Logit Models has been used. This 

formulation allows the two sources of behavioural uncertainty that may affect evacuees’ 

choices to be taken into account as discussed in Section 2.1.4. This modelling framework 

has then been merged in Section 2.7 with the general conceptual decision-making model 

identified in the introduction of this thesis (Figure 1.7). This allows the identification of the 

practical advantages deriving from the use of Random Utility Theory since it can provide a 

mathematical formulation in line with the conceptual understanding on how evacuees 

make choices during emergencies. 

 

The second objective of this thesis is to reduce the gaps between real and simulated 

evacuations. This objective is fulfilled by developing a methodology based on Random 

Utility Theory (Section 2.2) linking conceptual decision-making models with existing or 

new behavioural data. In detail, this procedure allows the verification of whether/how a 

factor affects the decision-making process and the intensity of such an influence. 

Moreover, the proposed methodology allows the comparison of the impact of different 
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factors on the choices. The proposed modelling methodology has been tested to 

investigate three different decisions in the case studies described in Chapters 3-5. 

Chapter 3 investigated the use of Random Utility Theory to model the decision-making 

process behind the decision to start investigating and evacuating whereas exit choice and 

the local movement choices were studied in Chapters 4 and 5, respectively. Therefore, 

this thesis provides an introduction to the possible applications of Random Utility Theory 

to model human behaviour in fire. Many other decision making processes can be 

investigated through the modelling approach used in this thesis as discussed in Section 

6.2. 

 

The final objective of this thesis is the identification of the data collection techniques and 

research methods, which can be used to collect behavioural data aimed at calibrating 

decision-making models. This goal was pursued in Section 2.4, analysing the existing 

state-of-the-art on data collection approaches. The advantages and disadvantages of 

different research strategies (i.e. combinations of data collection techniques and research 

methods) have been discussed. The impact of a research strategy on the final modelling 

results has been investigated by selecting three different research strategies for the three 

case studies. The decision to start investigating and evacuating has been investigated by 

combining observations and announced evacuation drills (Chapter 3) as well as exit 

choice using an online Stated Preferences survey (Chapter4). Finally, the local movement 

choices have been studied using observed pedestrian trajectories of participants in a 

Virtual Reality experiment. 

 

The behavioural data used in Chapter 3 have the highest ecological validity since the 

evacuees were not aware of being participants in an experiment. Despite the undeniable 

advantage of this dataset, the main issue of this type of dataset (i.e. unannounced 

evacuation drills) is that the choices are inferred by researchers observing the 

behavioural of evacuees. For instance, in Chapter 3 the passage from behavioural states 

is identified using the different behavioural observations made by Nilsson and Johansson 

(2009). This research strategy may lead to high measurement uncertainty for both the 

choice (i.e. dependent variable) and external factors (i.e. independent variable). In fact, it 

is not easy to define which external information was internalized by each evacuee before 
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making his/her decision. For example, in Chapter 3 each evacuee was surrounded by 

other evacuees and a consistent approach/rules to assess who is actually affecting 

his/her behaviour was not clearly defined. These issues could be solved in future 

experiments using more complex research strategies, e.g. interviewing the participants in 

unannounced evacuation drills after the experiments and linking the data from the video 

analysis with the data from the interviews (Lovreglio, Borri, et al. 2015). 

 

The behavioural data used in Chapter 4 have the lowest ecological validity since these 

data were collected using hypothetical scenarios in the form of videos through an online 

survey. Despite this limitation, the research strategy adopted in Chapter 4 provides 

preliminary findings on the context of choice characterized by many social and 

environmental factors. In fact, Stated Preference surveys give researchers an insight into 

the interaction between several independent variables thank to the very high control of 

the hypothetical scenarios. These preliminary results could be very useful as a starting 

point for future studies based on Efficient Design and using more advanced techniques 

such as immersive VR. 

 

Chapter 5 introduces behavioural data with a lower ecological validity than that in the first 

case study and higher than in the second case study. VR experiments represent a frontier 

new trend for researchers investigating human behaviour in fire (Nilsson & Kinateder 

2015). However, the use of a joypad could strongly affect the navigation findings provided 

by this research strategy and could represent the main technical limitation of this 

emerging technology. An open research question regarding this technology is whether the 

data collected using Virtual Reality experiments can be considered equivalent to that 

collected using classical laboratory experiments (Nilsson & Kinateder 2015). 

 

The last concern about all the investigated datasets regards the external validity of the 

findings. In fact, the generalization of the behavioural findings of the investigated case 

studies is a critical issue that can be addressed by applying the proposed methodology to 

many other case studies with different evacuee characteristics/demographics and 

evacuation settings. For instance, most of the participants in the experiments in case 

studies 1 and 3 were Swedish and this factor may affect the way in which they select an 
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option during emergencies. In case study 2, most of the participants were under 30 and 

this could have an impact on their exit choice. Therefore, future studies using this 

methodology should recognize general behavioural paths depending on evacuee 

characteristics/demographics. Moreover, the three case studies investigate the behaviour 

in different evacuation settings (cinema theatre, underground station and road tunnel) and 

these layouts may have an impact on the behavioural findings of this thesis. 

 

 

6.1 Implications of the Results 
 

The improvement of existing evacuation models by developing new decision-

making models and procedures to calibrate these models has several implications in the 

real world. 

 

This work has implications mainly in performance-based design analysis. This analysis, 

which has been described in the introduction of this thesis, is applied mainly to evaluate 

the safety conditions of new and existing buildings during fire emergency. In fact, 

evacuation models have been used in several engineering contexts to improve the design 

of buildings such as stadia (Graat et al. 1999; Fang et al. 2011; Zhang et al. 2007), high-

rise buildings (Pelechano & Malkawi 2008; Fahy 1994; Ronchi & Nilsson 2013a), stations 

(Shi et al. 2012; Jiang et al. 2010), tunnels (Ronchi 2012; Fridolf et al. 2015), music 

festival areas (Ronchi, Uriz, et al. 2015) and also to improve means of transport such as 

the design of ships (Galea et al. 2004; Gwynne et al. 2003; Klüpfel et al. 2000), trains 

(Capote et al. 2012) and aircraft (Galea & Perez Galparsoro 1994; Kirchner et al. 2003). 

 

Moreover, evacuation models have been used to evaluate and compare the effectiveness 

of different evacuation systems and strategies. For instance, Ma et al. (2012) and Ronchi 

and Nilsson (2013b) compare different evacuation strategies for high-rise buildings based 

on the use of either horizontal or vertical egress components or a combination of the two 

using a discrete and a continuous evacuation model, respectively. Koo et al. (2013) 

present new evacuation strategies for a heterogeneous population evacuating high-rise 
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building environments and compare them with a traditional simultaneous evacuation 

strategy. 

 

The improvements in evacuation models have also had an impact on forensic analysis 

and analysis of what-if scenarios. In fact, evacuation models can be used to 

investigate/reconstruct the behavioural processes which occurred and identify failures, 

inefficiencies and possible improvements.  For instance, Purser (2009) and Jiang et al.  

(2003) combined the results of an evacuation model and a CFD model to analyse the real 

case of the Mont-Blanc tunnel fire which occurred in the year 1999 and the Gothenburg 

fire incident in 1998, respectively. Kuligowski et al. (2011) used a multiple evacuation 

modelling approach to frame an understanding of actual evacuation findings on 

September 11, 2001. 

 

A further implication of this work is on crowd management in buildings and transportation 

systems in case of emergency. In fact, the possibility of using real-time evacuation 

simulations or pre-simulated evacuation scenarios could be useful to manage an 

emergency by selecting the most effective strategy using dynamic way-finding or other 

messaging strategies to give evacuees instructions. This use of evacuation models is still 

at an initial stage of research (Galea et al. 2015). However, experiments such as the one 

carried out at the Sant Cugat Station in Barcelona have shown that the combination of an 

evacuation model and a Dynamic Signage System could reduce the evacuation time 

supporting the evacuees’ wayfinding decisions in complex structures (Galea et al. 2015). 

 

Beyond the general implications of this thesis listed above, it is possible to identify the 

implications of the results of each case study. 

 

The first case study (Chapter 3) is an attempt to improve the representation of the pre-

evacuation phase. The need for reliable predictions of the pre-evacuation time is a key 

issue for fire building planners and designers since this time could greatly affect the total 

evacuation time as shown by many studies (Purser & Bensilum 1998; Kobes et al. 2010; 

McConnell et al. 2010). Therefore, evacuation models have to take into account pre-

evacuation time in order to make more reliable predictions of the safety conditions of 
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buildings during fires. This is generally done in existing models by delaying agents before 

the actual evacuation, making them stay in their starting positions, i.e. the pre-assumed 

fixed time approach (Kuligowski et al. 2010). Alternatively, a more reliable pre-evacuation 

model, such as the one introduced in this thesis should help researchers understand 

emergent behaviours as well as how evacuees use a building and navigate into it to 

perform their protective activities (e.g. alerting other people, collecting their belongings, 

etc.) before the actual movement toward a safe place. Therefore, a reliable pre-

evacuation model can help planners and designers to understand how design solutions 

(e.g. different alarm systems, notification strategies, etc.) can affect these activities and 

subsequently the pre-evacuation time. 

 

The second and third case study (Chapters 4 and 5) investigate local exit choice and local 

movement. The improvement of the existing understanding of how evacuees select their 

route (i.e. identification of the factors affecting the choice and assessment of the impact of 

each factor on the choice) and how they navigate interacting with physical and social 

obstacles could have a direct impact on more precise hazard assessment (i.e. the 

evaluation of evacuees’ life safety). In fact, evacuees’ life safety can be greatly affected 

by their exposure to toxic products. This exposition and the derived evacuee dose of a 

toxic gas absorbed depend on the position of the evacuees in space over time, in relation 

to safe and dangerous locations in a given scenario (Ronchi, Kinateder, et al. 2015). 

Finally, a better understanding of exit choice can have an impact on how to compare 

different exit design solutions and identify the one having the highest effectiveness in 

relation to a design goal.  

 

 

6.2 Future Research 
 

Several limitations have been identified and discussed in Section 2.6. These 

limitations refer to Random Utility Theory, modelling formulation used in this thesis (i.e. 

Mixed Logit Models) and the behavioural data used in each case study. Therefore, future 

research is necessary to overcome these limitations. From a modelling point of view, this 

can be done by reducing the gap between behavioural theory and discrete choice 
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models, developing a more complex theory including the paradigm of ‘Homo 

Psychologicus’. In fact, several studies have proved the existence of ‘cognitive anomalies’ 

whenever decision-makers use a variety of ‘‘quick and dirty’’ heuristics to make a choice 

(Ben-Akiva et al. 1999; Kuligowski 2013). The paradigms of ‘Homo Exonomicus’ and 

‘Homo Psychologicus’ have converged into an integrated approach called Dual Process 

Theory highlighting the existence of  both a rational–analytical system and an intuitive–

experiential system (Epstein et al. 1996; Starcke & Brand 2012). Therefore, a future 

challenge is the understanding of when both systems are used to make a choice and the 

developing of a more comprehensive and validated modelling formulation accounting for 

both systems. An additional modelling challenge is the development of a sub-model 

taking into account the fact that people tend to settle on a choice rather than find the 

optimal choice when they select an alternative among several others (Gwynne et al. 

2015). This sub-model should be able to extract a partial choice set from the complete 

choice set depending on the time available to process the information and the evacuees’ 

skills. 

 

In this work, Mixed Logit Models have been used to simulate decision-makers’ 

heterogeneity through random parameters. However, more advance modelling 

techniques, such as latent class models and hybrid choice models, can be used in future 

works to segment the decision-makers into latent classes and to investigate the impact of 

several latent factors on their choices. The main issue in the calibration of such a complex 

model is the need for adequate behavioural data including much more information on the 

evacuees (Lovreglio, Borri, et al. 2015). This limitation related to the behavioural data can 

be overcome in future studies by developing more complex research strategies aimed at  

having both high validity of the data and experimental control. 

 

This thesis has investigated the use of Random Utility Theory for three selected evacuee 

choices in specific evacuation scenarios. Future research needs to investigate the 

generalization of the behavioural findings of this work. This can be done by developing 

further models for several other evacuation scenarios to verify whether it is possible to 

identify general behavioural paths affecting evacuee behaviour. Moreover, the modelling 

approach proposed in this thesis can be used in the future to investigate several other 
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decisions affecting evacuee behaviour. For instance, Random Utility Theory can be used 

to model all the decisions identified in Section 2.1.2 and not yet investigated in this thesis, 

such as the actions taken to seek further information, the selection of pre-evacuation 

activities, etc. Moreover, the time line model described in Section 1.1.1 assumes that that 

an evacuation always takes place. However, there may be other behaviours that can 

occur such as  fighting the fire, warning other people, waiting for assistance (Canter et al. 

1980) or sheltering in place. The modelling solution introduced in this work can also be 

used to investigate all these further decisions. 

 

This thesis investigates the advantages and disadvantages of the use of Random Utility 

Theory to model evacuees’ decision-making process. However, it is necessary to mention 

that several other theories/methods have been used to address this issue in previous 

studies during the last decade. For example, Pan et al. (2007) use a deterministic 

Decision-Rule approach to define the actions taken by agents during evacuations based 

on perceived cues and agent’s psychological factors (i.e., perceived importance, 

uncertainty and urgency). Ethamo et al. (2009) investigate the use of Deterministic Utility 

Model to simulate evacuees’ exit choice. Many other studies (Sharma et al. 2008; 

Dell’Orco et al. 2014; Tomé et al. 2009; Lo et al. 2009) have been carried out to study the 

advantage of using a Fuzzy Logic approach to model uncertainty in behaviour that results 

from stress. Application of the Game Theory have been also introduced into the literature 

to investigate exit choice (Lo et al. 2006; Mesmer & Bloebaum 2014; Ehtamo et al. 2010) 

and collision avoidance among agents (Tanimoto et al. 2010; Zheng & Cheng 2011b; 

Zheng & Cheng 2011a; Shi & Wang 2013). Finally, other navigation models inspired by 

insect behaviour, i.e. Particle Swarm Optimization (Zheng et al. 2012; Izquierdo et al. 

2009), and based on Heuristic Approaches (Degond et al. 2013; Moussaïd et al. 2011) 

have been introduced into the literature. Therefore, future studies are necessary to 

compare the use of RUT with other theories/methods used to model human behaviour in 

fire, highlighting the advantages and limitations of each theory and providing 

recommendations on its use. The behavioural statements introduced by Gwynne et al. 

(2015) represent a valuable reference point to evaluate the behavioural validity of the 

assumptions underpinning different theories/methods. Finally, future works also need to 
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assess the possibility of merging different theories/methods to improve the predictability 

and validity of the final evacuation model. 

 

Finally, this thesis represents a step forward toward the future generation of evacuation 

models, namely self-predictive models. This new generation of models are aimed at 

reducing the impact of the user on the final results provided by the models. At the 

moment, several evacuee choices -such as pre-evacuation time - are defined by the 

users before the simulation rather than predicted by the model. Therefore, this approach 

is strongly affected by the decisions made by the users and can lead to either too 

optimistic or too conservative estimation because of the lack of behavioural data to 

choose appropriate input settings (Kuligowski 2013). Furthermore, these modelling tasks 

can be aggravated by the absence of well-defined instructions in codes and regulations 

(Ronchi 2012). Reducing the impact of users on the outputs of evacuation models can be 

achieved by letting evacuation models simulate all the key factors affecting the 

evacuation process such as evacuees’ decision-making. However, this new generation of 

self-predicting model relies on model input calibration. Therefore, researchers should be 

careful in calibrating these new models and stating for which scenarios the model has 

been calibrated and when it can and cannot be used. This thesis provides some means to 

cope with these new challenges using Random Utility Theory. However, many other 

future efforts are still necessary to develop a full self-predictive evacuation model. 
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APPENDIX 
 
 

Appendix 1: Pseudo Code 
 
Set agents to list of all agents included in the scenario 
For each agent in agents  
  

Set  state(agent) to current state of the agent (i.e. normal, investigating or 
evacuating) 
 
# decision to investigate# 
If state(agent) = normal 

pInv = probability of investigating 
rn1 = get a random number from 0 to 1 
if rn1 <pInv 

newState(agent) = investigating 
print‘agent start investigating’ 

else 
newState(agent) = state(agent) 

end if 
end if 

  
 # decision to evacuate# 

If state(agent) = normal  or state(agent) = investigating 
pEvac = probability of evacuating 
rn2 = get a random number from 0 to 1 
if rn2 <pEvac 

newState(agent) = evacuating 
print‘agent start evacuating’ 

else 
newState(agent) = state(agent) 

  end if 
end if 
 

end for each 
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Appendix 2: Pilot Survey 
 

The levels of the variables and the hypothetical scenarios of the pilot survey are 

shown in Table A1 and A2, respectively. 
 

Table A1 - Levels for each variable included in the pilot survey 

Variable Description Levels 

NCEi* (pers) Number of evacuees Close to the Exits 0   5   10   20 

FLi (pers/s) FLow of evacuees through the exits 0.6   1.2   1.5 

NCDM (pers) Number of evacuees Close to the Decision-Maker  0   5   10 

SMi SMoke near the exits 0   1 

ELi Evacuation Lights above the exits 0   1 

DIST (m) DISTance of the decision-maker from the exits 
10   12   14   

16 

NEAR_E 
Dummy variable equal to 0 if  the decision-maker is closer to the 

right-hand exit, 1 otherwise 
0   1 

DIR 
Dummy variable equal to 0 if the agents near the decision-maker 

move towards the right-hand exit, 1 otherwise 
0   1 

*the values refer to the end of the videos 

 

 

Table A2 – Pilot scenarios 

Scenario NCEL NCER FLL FLR SML SMR ELL ELR NCDM DIR DIST NEAR_E 

1 20 0 0.9 0.9 1 1 0 0 5 1 1 20 

2 10 20 0.6 1.2 0 1 0 0 5 1 0 10 

3 10 0 1.5 1.2 0 1 0 1 0 0 1 10 

4 5 20 1.5 0.6 0 1 1 0 0 1 0 5 

5 20 5 0.6 1.2 0 0 1 1 0 0 1 20 

6 10 10 0.6 0.6 1 1 1 1 5 1 1 10 

7 5 10 1.2 0.9 0 0 0 1 5 1 0 5 

8 5 0 1.2 1.5 0 0 1 0 5 1 1 5 

9 0 20 0.9 1.5 1 0 0 1 0 0 0 0 

10 0 5 1.5 0.6 1 0 1 1 5 1 0 0 

11 20 10 1.2 0.9 1 0 0 0 0 1 1 20 

12 0 5 0.9 1.5 1 1 1 0 0 0 0 0 
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